1,132 research outputs found

    Multiplicity with a Thrust Cut

    Full text link
    We evaluate the multiplicity of hadrons in the e+ee^+e^--annihilation at a given thrust TT in the modified leading-log approximation, including O(αs)O(\sqrt{\alpha_s}) corrections. The calculation is done at a large value of τ=1T\tau =1-T by the use of the factorisation which takes place in the one-particle-inclusive cross section at a given τ\tau. At a small τ\tau, a different type of factorisation takes place, which also enable us to evaluate the multiplicity. Two approaches are compared numerically. Measuring this quantity near τ=1/3\tau =1/3, we can determine the multiplicity ratio between a gluon-jet and a quark-jet.Comment: OCHA-PP-32, LATEX FILE, 21

    The Continuum Directed Random Polymer

    Full text link
    Motivated by discrete directed polymers in one space and one time dimension, we construct a continuum directed random polymer that is modeled by a continuous path interacting with a space-time white noise. The strength of the interaction is determined by an inverse temperature parameter beta, and for a given beta and realization of the noise the path evolves in a Markovian way. The transition probabilities are determined by solutions to the one-dimensional stochastic heat equation. We show that for all beta > 0 and for almost all realizations of the white noise the path measure has the same Holder continuity and quadratic variation properties as Brownian motion, but that it is actually singular with respect to the standard Wiener measure on C([0,1]).Comment: 21 page

    Nonperturbative Effects in Gluon Radiation and Photoproduction of Quark Pairs

    Get PDF
    We introduce a nonperturbative interaction for light-cone fluctuations containing quarks and gluons. The qˉq\bar qq interaction squeezes the transverse size of these fluctuations in the photon and one does not need to simulate this effect via effective quark masses. The strength of this interaction is fixed by data. Data on diffractive dissociation of hadrons and photons show that the nonperturbative interaction of gluons is much stronger. We fix the parameters for the nonperturbative quark-gluon interaction by data for diffractive dissociation to large masses (triple-Pomeron regime). This allows us to predict nuclear shadowing for gluons which turns out to be not as strong as perturbative QCD predicts. We expect a delayed onset of gluon shadowing at x102x \leq 10^{-2} shadowing of quarks. Gluon shadowing turns out to be nearly scale invariant up to virtualities Q24GeV2Q^2\sim 4 GeV^2 due to presence of a semihard scale characterizing the strong nonperturbative interaction of gluons. We use the same concept to improve our description of gluon bremsstrahlung which is related to the distribution function for a quark-gluon fluctuation and the interaction cross section of a qˉqG\bar qqG fluctuation with a nucleon. We expect the nonperturbative interaction to suppress dramatically the gluon radiation at small transverse momenta compared to perturbative calculations.Comment: 58 pages of Latex including 11 figures. Shadowing for soft gluons and Fig. 6 are added as well as a few reference

    Can we continue research in splenectomized dogs? Mycoplasma haemocanis: Old problem - New insight

    Get PDF
    We report the appearance of a Mycoplasma haemocanis infection in laboratory dogs, which has been reported previously, yet, never before in Europe. Outbreak of the disease was triggered by a splenectomy intended to prepare the dogs for a hemorrhagic shock study. The clinical course of the dogs was dramatic including anorexia and hemolytic anemia. Treatment included allogeneic transfusion, prednisone, and oxytetracycline. Systematic follow-up (n=12, blood smears, antibody testing and specific polymerase chain reaction) gives clear evidence that persistent eradication of M. haemocanis is unlikely. We, therefore, had to abandon the intended shock study. In the absence of effective surveillance and screening for M. haemocanis, the question arises whether it is prudent to continue shock research in splenectomized dogs. Copyright (C) 2004 S. Karger AG, Basel

    Nuclear Shadowing in DIS: Numerical Solution of the Evolution Equation for the Green Function

    Get PDF
    Within a light-cone QCD formalism based on the Green function technique incorporating color transparency and coherence length effects we study nuclear shadowing in deep-inelastic scattering at moderately small Bjorken x_{Bj}. Calculations performed so far were based only on approximations leading to an analytical harmonic oscillatory form of the Green function. We present for the first time an exact numerical solution of the evolution equation for the Green function using realistic form of the dipole cross section and nuclear density function. We compare numerical results for nuclear shadowing with previous predictions and discuss differences.Comment: 21 pages including 3 figures; a small revision of the tex

    Elastic scattering and breakup of 17^F at 10 MeV/nucleon

    Full text link
    Angular distributions of fluorine and oxygen produced from 170 MeV 17^F incident on 208^Pb were measured. The elastic scattering data are in good agreement with optical model calculations using a double-folding potential and parameters similar to those obtained from 16^O+208^Pb. A large yield of oxygen was observed near \theta_lab=36 deg. It is reproduced fairly well by a calculation of the (17^F,16^O) breakup, which is dominated by one-proton stripping reactions. The discrepancy between our previous coincidence measurement and theoretical predictions was resolved by including core absorption in the present calculation.Comment: 9 pages, 5 figure

    Color Transparency versus Quantum Coherence in Electroproduction of Vector Mesons off Nuclei

    Full text link
    So far no theoretical tool for the comprehensive description of exclusive electroproduction of vector mesons off nuclei at medium energies has been developed. We suggest a light-cone QCD formalism which is valid at any energy and incorporates formation effects (color transparency), the coherence length and the gluon shadowing. At medium energies color transparency (CT) and the onset of coherence length (CL) effects are not easily separated. Indeed, although nuclear transparency measured by the HERMES experiment rises with Q^2, it agrees with predictions of the vector dominance model (VDM) without any CT effects. Our new results and observations are: (i) the good agreement with the VDM found earlier is accidental and related to the specific correlation between Q^2 and CL for HERMES kinematics; (ii) CT effects are much larger than have been estimated earlier within the two channel approximation. They are even stronger at low than at high energies and can be easily identified by HERMES or at JLab; (iii) gluon shadowing which is important at high energies is calculated and included; (iv) our parameter-free calculations explain well available data for variation of nuclear transparency with virtuality and energy of the photon; (v) predictions for electroproduction of \rho and \phi are provided for future measurements at HERMES and JLab.Comment: Latex 57 pages and 17 figure
    corecore