19 research outputs found
Separation of K+ and Bi3+ displacements in a Pb-free, monoclinic piezoelectric at the morphotropic phase boundary
The best piezoelectric properties of any perovskite oxide known are found in the solid solution of the relaxor Pb(Mg1/3Nb2/3)O3 and ferroelectric PbTiO3. Despite its impressive properties, this system has limited analogy. We present the compositional exploration of the Pb-free analogue (1-x)(K1/2Bi1/2)(Mg1/3Nb2/3)O3-x(K1/2Bi1/2)TiO3 (KBMN-KBT). We locate the morphotropic phase boundary between x = 0.86 and 0.88 changing from Cm to Pm symmetry and the optimally performing composition at x = 0.88. We report a piezoelectric figure of merit (d33*) of 192 pm V−1 from strain measurements. Diffraction methods reveal disordered displacements of K+ and Bi3+ which persist from the KBMN endmember through multiple changes in symmetry. Rearrangement of the Bi3+ displacements along the uncommon [011]c direction drives the physical response. Ferroelectric, dielectric, and piezoresponse force microscopy are used to study the progression of physical properties through the MPB and attribute the mechanism to a polarization rotation. Taking account for local, short-range, and average structural features yield a balanced perspective on the structure and properties of this system, isolating the driving force within this system to the Bi3+ bonding configuration. This work yields a strong analogy to the Pb-based analogue, and provides strategies for further optimization
Crystal structure, electronic, and magnetic properties of the bilayered rhodium oxide Sr3Rh2O7
The bilayered rhodium oxide Sr3Rh2O7 was synthesized by high-pressure and
high-temperature heating techniques. The single-phase polycrystalline sample of
Sr3Rh2O7 was characterized by measurements of magnetic susceptibility,
electrical resistivity, specific heat, and thermopower. The structural
characteristics were investigated by powder neutron diffraction study. The
rhodium oxide Sr3Rh2O7 [Bbcb, a = 5.4744(8) A, b = 5.4716(9) A, c = 20.875(2)
A] is isostructural to the metamagnetic metal Sr3Ru2O7, with five 4d electrons
per Rh, which is electronically equivalent to the hypothetic bilayered
ruthenium oxide, where one electron per Ru is doped into the Ru-327 unit. The
present data show the rhodium oxide Sr3Rh2O7 to be metallic with enhanced
paramagnetism, similar to Sr3Ru2O7. However, neither manifest contributions
from spin fluctuations nor any traces of a metamagnetic transition were found
within the studied range from 2 K to 390 K below 70 kOe.Comment: To be published in PR
Recommended from our members
Mechanism matters: mortality and endothelial cell damage marker differences between blunt and penetrating traumatic injuries across three prehospital clinical trials
Injury mechanism is an important consideration when conducting clinical trials in trauma. Mechanisms of injury may be associated with differences in mortality risk and immune response to injury, impacting the potential success of the trial. We sought to characterize clinical and endothelial cell damage marker differences across blunt and penetrating injured patients enrolled in three large, prehospital randomized trials which focused on hemorrhagic shock. In this secondary analysis, patients with systolic blood pressure 108 were included. In addition, patients with both blunt and penetrating injuries were excluded. The primary outcome was 30-day mortality. Mortality was characterized using Kaplan–Meier and Cox proportional-hazards models. Generalized linear models were used to compare biomarkers. Chi squared tests and Wilcoxon rank-sum were used to compare secondary outcomes. We characterized data of 696 enrolled patients that met all secondary analysis inclusion criteria. Blunt injured patients had significantly greater 24-h (18.6% vs. 10.7%, log rank p = 0.048) and 30-day mortality rates (29.7% vs. 14.0%, log rank p = 0.001) relative to penetrating injured patients with a different time course. After adjusting for confounders, blunt mechanism of injury was independently predictive of mortality at 30-days (HR 1.84, 95% CI 1.06–3.20, p = 0.029), but not 24-h (HR 1.65, 95% CI 0.86–3.18, p = 0.133). Elevated admission levels of endothelial cell damage markers, VEGF, syndecan-1, TM, S100A10, suPAR and HcDNA were associated with blunt mechanism of injury. Although there was no difference in multiple organ failure (MOF) rates across injury mechanism (48.4% vs. 42.98%, p = 0.275), blunt injured patients had higher Denver MOF score (p < 0.01). The significant increase in 30-day mortality and endothelial cell damage markers in blunt injury relative to penetrating injured patients highlights the importance of considering mechanism of injury within the inclusion and exclusion criteria of future clinical trials. © 2024, The Author(s).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]