53 research outputs found

    Complete and Partial LCAT Deficiency are Differentially Associated with Atherosclerosis

    Get PDF
    Background\u2014Lecithin:cholesterol acyltransferase (LCAT) is the sole enzyme that esterifies cholesterol in plasma. Its role in the supposed protection from atherogenesis remains unclear since mutations in LCAT causing Fish-Eye Disease (FED) or Familial LCAT Deficiency (FLD) have been reported to be associated with more or instead less carotid atherosclerosis, respectively. This discrepancy may be associated with the loss of cholesterol esterification on only apolipoprotein (apo) A-I (FED) or on both apoA-I and apoB-containing lipoproteins (FLD), an aspect that has thus far not been investigated. Methods\u2014Seventy-four heterozygotes for LCAT mutations recruited from Italy and the Netherlands were assigned to FLD (n=33) or FED (n=41) groups and compared to 280 controls. Subclinical atherosclerosis was assessed using carotid intima-media thickness (IMT). Results\u2014Compared to controls, total cholesterol was lower by 16% (-32.9 mg/dL) and 7% (-14.9 mg/dL), and HDL cholesterol was lower by 29% (-16.7 mg/dL) and 36% (-20.7 mg/dL) in the FLD and FED groups, respectively. FLD subjects displayed a significant 18% lower LDL cholesterol compared with FED (101.9\ub135.0 vs 123.6\ub147.4 mg/dL, P=0.047) and controls (122.6\ub135.0 mg/dL, P=0.003). Remarkably, all three IMT parameters were lower in FLD compared to FED and controls (accounting for age, sex, BMI, smoking, hypertension, family history of cardiovascular disease and plasma lipids). After additional correction for nationality and ultrasonographic methods, average and maximum IMT remained significantly lower when comparing FLD to FED (0.59mm vs 0.73mm, P=0.003, and 0.87mm vs 1.24mm, P<0.001, respectively). By contrast, the common carotid IMT (corrected for age, sex, BMI, smoking, hypertension, family history of cardiovascular disease, and plasma lipids) was higher in FED compared to controls (0.69mm versus 0.65mm, P=0.05), but this significance was lost after adjustment for nationality and ultrasonographic machine. Conclusions\u2014In this head-to-head comparison, FLD and FED mutations were shown to be associated with decreased and increased atherosclerosis, respectively. We propose that this discrepancy is related to the capacity of LCAT to generate cholesterol esters on apoB-containing lipoproteins. While this capacity is lost in FLD, it is unaffected in FED. These results are important when considering LCAT as a target to decrease atherosclerosis

    Deficiency of the T cell regulator Casitas B-cell lymphoma-B aggravates atherosclerosis by inducing CD8+ T cell-mediated macrophage death

    Get PDF
    The E3-ligase CBL-B (Casitas B-cell lymphoma-B) is an important negative regulator of T cell activation that is also expressed in macrophages. T cells and macrophages mediate atherosclerosis, but their regulation in this disease remains largely unknown; thus, we studied the function of CBL-B in atherogenesis.The expression of CBL-B in human atherosclerotic plaques was lower in advanced lesions compared with initial lesions and correlated inversely with necrotic core area. Twenty weeks old Cblb−/−Apoe−/− mice showed a significant increase in plaque area in the aortic arch, where initial plaques were present. In the aortic root, a site containing advanced plaques, lesion area rose by 40%, accompanied by a dramatic change in plaque phenotype. Plaques contained fewer macrophages due to increased apoptosis, larger necrotic cores, and more CD8+ T cells. Cblb−/−Apoe−/− macrophages exhibited enhanced migration and increased cytokine production and lipid uptake. Casitas B-cell lymphoma-B deficiency increased CD8+ T cell numbers, which were protected against apoptosis and regulatory T cell-mediated suppression. IFNγ and granzyme B production was enhanced in Cblb−/−Apoe−/− CD8+ T cells, which provoked macrophage killing. Depletion of CD8+ T cells in Cblb−/−Apoe−/− bone marrow chimeras rescued the phenotype, indicating that CBL-B controls atherosclerosis mainly through its function in CD8+ T cells. Casitas B-cell lymphoma-B expression in human plaques decreases during the progression of atherosclerosis. As an important regulator of immune responses in experimental atherosclerosis, CBL-B hampers macrophage recruitment and activation during initial atherosclerosis and limits CD8+ T cell activation and CD8+ T cell-mediated macrophage death in advanced atherosclerosis, thereby preventing the progression towards high-risk plaques.Biopharmaceutic

    Loss of hepatic SMLR1 causes hepatosteatosis and protects against atherosclerosis due to decreased hepatic VLDL secretion

    Get PDF
    The assembly and secretion of VLDL from the liver, a pathway that affects hepatic and plasma lipids, remains incompletely understood. We set out to identify players in the VLDL biogenesis pathway by identifying genes that are co-expressed with the MTTP gene that encodes for microsomal triglyceride transfer protein, key to the lipidation of apolipoprotein B, the core protein of VLDL. Using human and murine transcriptomic data sets, we identified small leucine-rich protein 1 (SMLR1), encoding for small leucine-rich protein 1, a protein of unknown function that is exclusively expressed in liver and small intestine. To assess the role of SMLR1 in the liver, we used somatic CRISPR/CRISPR-associated protein 9 gene editing to silence murine Smlr1 in hepatocytes (Smlr1-LKO). When fed a chow diet, male and female mice show hepatic steatosis, reduced plasma apolipoprotein B and triglycerides, and reduced VLDL secretion without affecting microsomal triglyceride transfer protein activity. Immunofluorescence studies show that SMLR1 is in the endoplasmic reticulum and Cis-Golgi complex. The loss of hepatic SMLR1 in female mice protects against diet-induced hyperlipidemia and atherosclerosis but causes NASH. On a high-fat, high-cholesterol diet, insulin and glucose tolerance tests did not reveal differences in male Smlr1-LKO mice versus controls. We propose a role for SMLR1 in the trafficking of VLDL from the endoplasmic reticulum to the Cis-Golgi complex. While this study uncovers SMLR1 as a player in the VLDL assembly, trafficking, and secretion pathway, it also shows that NASH can occur with undisturbed glucose homeostasis and atheroprotection.Medicinal Chemistr

    Modulation of low-density lipoprotein-induced inhibition of intercellular communication by antioxidants and high-density lipoproteins.

    No full text
    In order to study the capacity of antioxidants and high-density lipoproteins (HDL) to modulate the effects of low-density lipoprotein (LDL) on intercellular communication, arterial smooth muscle cells and a dye transfer method were used. LDL, in contrast to HDL, inhibited the communication between arterial smooth muscle cells from human umbilical cord and thoracic aorta in a dose-dependent manner. LDL, which can be oxidized, as detected by the lipid-peroxidation assay and gel electrophoresis, did not influence cell-cell communication in the presence of the antioxidants butylated hydroxytoluene (BHT), alpha-tocopherol and glutathione. The results suggest that LDL must undergo oxidative modification before it can influence intercellular communication. Like antioxidants, HDL diminished the LDL-induced inhibition of cell-cell communication. This study suggests that the modulation of gap-junctional communication by the balance of HDL and LDL in plasma may influence atherogenesis
    corecore