833 research outputs found

    Spontaneous parity violation and minimal Higgs models

    Get PDF
    In this paper we present a model for the spontaneous breaking of parity with two Higgs doublets and two neutral Higgs singlets which are even and odd under D-parity. The condition vR>>vL v_R >>v_L can be satisfied without introducing bidoublets and it is induced by the breaking of D-parity through the vacuum expectation value of the odd Higgs singlet. Examples of left-right symmetric and mirror fermions models in grand unified theories are presented.Comment: Revised version. Accepted in Eur. Phys. Journal

    Quasi-Fermi Distribution and Resonant Tunneling of Quasiparticles with Fractional Charges

    Full text link
    We study the resonant tunneling of quasiparticles through an impurity between the edges of a Fractional Quantum Hall sample. We show that the one-particle momentum distribution of fractionally charged edge quasiparticles has a quasi-Fermi character. The density of states near the quasi-Fermi energy at zero temperature is singular due to the statistical interaction of quasiparticles. Another effect of this interaction is a new selection rule for the resonant tunneling of fractionally charged quasiparticles: the resonance is suppressed unless an integer number of {\em electrons} occupies the impurity. It allows a new explanation of the scaling behavior observed in the mesoscopic fluctuations of the conductivity in the FQHE.Comment: 7 pages, REVTeX 3.0, Preprint SU-ITP-93-1

    A multiwavelength study of the supernova remnant G296.8-0.3

    Get PDF
    We report XMM-Newton observations of the Galactic supernova remnant G296.8-0.3, together with complementary radio and infrared data. The spatial and spectral properties of the X-ray emission, detected towards G296.8-0.3, was investigated in order to explore the possible evolutionary scenarios and the physical connexion with its unusual morphology detected at radio frequencies. G296.8-0.3 displays diffuse X-ray emission correlated with the peculiar radio morphology detected in the interior of the remnant and with the shell-like radio structure observed to the northwest side of the object. The X-ray emission peaks in the soft/medium energy range (0.5-3.0 keV). The X-ray spectral analysis confirms that the column density is high (NH \sim 0.64 x 10^{22} cm^{-2}) which supports a distant location (d>9 kpc) for the SNR. Its X-ray spectrum can be well represented by a thermal (PSHOCK) model, with kT \sim 0.86 keV, an ionization timescale of 6.1 x 10^{10} cm^{-3} s, and low abundance (0.12 Z_sun). The 24 microns observations show shell-like emission correlated with part of the northwest and southeast boundaries of the SNR. In addition a point-like X-ray source is also detected close to the geometrical center of the radio SNR. The object presents some characteristics of the so-called compact central objects (CCO). Its X-ray spectrum is consistent with those found at other CCOs and the value of NH is consistent with that of G296.8-0.3, which suggests a physical connexion with the SNR.Comment: Accepted for publication in Astrophysics & Space Scienc

    Assisted Tachyonic Inflation

    Full text link
    The model of inflation with a single tachyon field generates larger anisotropy and has difficulties in describing the formation of the Universe . In this paper we consider a model with multi tachyon fields and study the assisted inflationary solution. Our results show that this model satisfies the observation.Comment: 5 pages, no figures, a revised version and reference adde

    Itinerant ferromagnetism in half-metallic CoS_2

    Full text link
    We have investigated electronic and magnetic properties of the pyrite-type CoS_2 using the linearized muffin-tin orbital (LMTO) band method. We have obtained the ferromagnetic ground state with nearly half-metallic nature. The half-metallic stability is studied by using the fixed spin moment method. The non-negligible orbital magnetic moment of Co 3d electrons is obtained as μL=0.06μB\mu_L = 0.06 \mu_B in the local spin density approximation (LSDA). The calculated ratio of the orbital to spin angular momenta / = 0.15 is consistent with experiment. The effect of the Coulomb correlation between Co 3d electrons is also explored with the LSDA + U method. The Coulomb correlation at Co sites is not so large, U1U \lesssim 1 eV, and so CoS_2 is possibly categorized as an itinerant ferromagnet. It is found that the observed electronic and magnetic behaviors of CoS_2 can be described better by the LSDA than by the LSDA + U.Comment: 4 pages, 3 postscript figure

    Characteristics of Cosmic Time

    Get PDF
    The nature of cosmic time is illuminated using Hamilton-Jacobi theory for general relativity. For problems of interest to cosmology, one may solve for the phase of the wavefunctional by using a line integral in superspace. Each contour of integration corresponds to a particular choice of time hypersurface, and each yields the same answer. In this way, one can construct a covariant formalism where all time hypersurfaces are treated on an equal footing. Using the method of characteristics, explicit solutions for an inflationary epoch with several scalar fields are given. The theoretical predictions of double inflation are compared with recent galaxy data and large angle microwave background anisotropies.Comment: 20 pages, RevTex using Latex 2.09, Submitted to Physical Review D Two figures included in fil

    The muon g-2 in a SU(7) left-right symmetric model with mirror fermions

    Full text link
    We have studied a left-right symmetric model with mirror fermions based in a grand unified SU(7) model in order to account for the muon anomaly. The Higgs sector of the model contains two Higgs doublets and the hierarchy condition υLυR\upsilon_{L}\ll\upsilon_{R} can be achieved by using two additional Higgs singlets, one even and other odd under D\mathcal{D}-parity. We show that there is a wide range of values for the mass parameters of the model that is consistent with the g2g-2 lepton anomalies. Radiative correction to the mass of the ordinary fermions are shown to be small

    The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant

    Full text link
    We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the resultant data cube, we have been able to reconstruct the full 3D structure of the system of [O III] filaments. The majority of the ejecta form a ring of ~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We conclude that SNR N132D is approaching the end of the reverse shock phase before entering the fully thermalized Sedov phase of evolution. We speculate that the ring of oxygen-rich material comes from ejecta in the equatorial plane of a bipolar explosion, and that the overall shape of the SNR is strongly influenced by the pre-supernova mass loss from the progenitor star. We find tantalizing evidence of a polar jet associated with a very fast oxygen-rich knot, and clear evidence that the central star has interacted with one or more dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8 figure

    Single-Band Model for Diluted Magnetic Semiconductors: Dynamical and Transport Properties and Relevance of Clustered States

    Full text link
    Dynamical and transport properties of a simple single-band spin-fermion lattice model for (III,Mn)V diluted magnetic semiconductors (DMS) is here discussed using Monte Carlo simulations. This effort is a continuation of previous work (G. Alvarez, Phys. Rev. Lett. 89, 277202 (2002)) where the static properties of the model were studied. The present results support the view that the relevant regime of J/t (standard notation) is that of intermediate coupling, where carriers are only partially trapped near Mn spins, and locally ordered regions (clusters) are present above the Curie temperature T_C. This conclusion is based on the calculation of the resistivity vs. temperature, that shows a soft metal to insulator transition near T_C, as well on the analysis of the density-of-states and optical conductivity. In addition, in the clustered regime a large magnetoresistance is observed in simulations. Formal analogies between DMS and manganites are also discussed.Comment: Revtex4, 20 figures. References updated, minor changes to figures and tex

    Supersymmetric string model with 30 kappa--symmetries in an extended D=11 superspace and 30/ 32 BPS states

    Full text link
    A supersymmetric string model in the D=11 superspace maximally extended by antisymmetric tensor bosonic coordinates, Σ(52832)\Sigma^{(528|32)}, is proposed. It possesses 30 κ\kappa-symmetries and 32 target space supersymmetries. The usual preserved supersymmetry-κ\kappa-symmetry correspondence suggests that it describes the excitations of a BPS state preserving all but two supersymmetries. The model can also be formulated in any Σ(n(n+1)2n)\Sigma^{({n(n+1)\over 2}|n)} superspace, n=32 corresponding to D=11. It may also be treated as a `higher--spin generalization' of the usual Green--Schwarz superstring. Although the global symmetry of the model is a generalization of the super--Poincar\'e group, Σ(n(n+1)2n)×Sp(n){\Sigma}^{({n(n+1)\over 2}|n)}\times\supset Sp(n), it may be formulated in terms of constrained OSp(2n|1) orthosymplectic supertwistors. We work out this supertwistor realization and its Hamiltonian dynamics. We also give the supersymmetric p-brane generalization of the model. In particular, the Σ(52832)\Sigma^{(528|32)} supersymmetric membrane model describes excitations of a 30/32 BPS state, as the Σ(52832)\Sigma^{(528|32)} supersymmetric string does, while the supersymmetric 3-brane and 5-brane correspond, respectively, to 28/32 and 24/32 BPS states.Comment: 23 pages, RevTex4. V2: minor corrections in title and terminology, some references and comments adde
    corecore