833 research outputs found
Spontaneous parity violation and minimal Higgs models
In this paper we present a model for the spontaneous breaking of parity with
two Higgs doublets and two neutral Higgs singlets which are even and odd under
D-parity. The condition can be satisfied without introducing
bidoublets and it is induced by the breaking of D-parity through the vacuum
expectation value of the odd Higgs singlet. Examples of left-right symmetric
and mirror fermions models in grand unified theories are presented.Comment: Revised version. Accepted in Eur. Phys. Journal
Quasi-Fermi Distribution and Resonant Tunneling of Quasiparticles with Fractional Charges
We study the resonant tunneling of quasiparticles through an impurity between
the edges of a Fractional Quantum Hall sample. We show that the one-particle
momentum distribution of fractionally charged edge quasiparticles has a
quasi-Fermi character. The density of states near the quasi-Fermi energy at
zero temperature is singular due to the statistical interaction of
quasiparticles. Another effect of this interaction is a new selection rule for
the resonant tunneling of fractionally charged quasiparticles: the resonance is
suppressed unless an integer number of {\em electrons} occupies the impurity.
It allows a new explanation of the scaling behavior observed in the mesoscopic
fluctuations of the conductivity in the FQHE.Comment: 7 pages, REVTeX 3.0, Preprint SU-ITP-93-1
A multiwavelength study of the supernova remnant G296.8-0.3
We report XMM-Newton observations of the Galactic supernova remnant
G296.8-0.3, together with complementary radio and infrared data. The spatial
and spectral properties of the X-ray emission, detected towards G296.8-0.3, was
investigated in order to explore the possible evolutionary scenarios and the
physical connexion with its unusual morphology detected at radio frequencies.
G296.8-0.3 displays diffuse X-ray emission correlated with the peculiar radio
morphology detected in the interior of the remnant and with the shell-like
radio structure observed to the northwest side of the object. The X-ray
emission peaks in the soft/medium energy range (0.5-3.0 keV). The X-ray
spectral analysis confirms that the column density is high (NH \sim 0.64 x
10^{22} cm^{-2}) which supports a distant location (d>9 kpc) for the SNR. Its
X-ray spectrum can be well represented by a thermal (PSHOCK) model, with kT
\sim 0.86 keV, an ionization timescale of 6.1 x 10^{10} cm^{-3} s, and low
abundance (0.12 Z_sun). The 24 microns observations show shell-like emission
correlated with part of the northwest and southeast boundaries of the SNR. In
addition a point-like X-ray source is also detected close to the geometrical
center of the radio SNR. The object presents some characteristics of the
so-called compact central objects (CCO). Its X-ray spectrum is consistent with
those found at other CCOs and the value of NH is consistent with that of
G296.8-0.3, which suggests a physical connexion with the SNR.Comment: Accepted for publication in Astrophysics & Space Scienc
Assisted Tachyonic Inflation
The model of inflation with a single tachyon field generates larger
anisotropy and has difficulties in describing the formation of the Universe .
In this paper we consider a model with multi tachyon fields and study the
assisted inflationary solution. Our results show that this model satisfies the
observation.Comment: 5 pages, no figures, a revised version and reference adde
Itinerant ferromagnetism in half-metallic CoS_2
We have investigated electronic and magnetic properties of the pyrite-type
CoS_2 using the linearized muffin-tin orbital (LMTO) band method. We have
obtained the ferromagnetic ground state with nearly half-metallic nature. The
half-metallic stability is studied by using the fixed spin moment method. The
non-negligible orbital magnetic moment of Co 3d electrons is obtained as in the local spin density approximation (LSDA). The calculated
ratio of the orbital to spin angular momenta / = 0.15 is
consistent with experiment. The effect of the Coulomb correlation between Co 3d
electrons is also explored with the LSDA + U method. The Coulomb correlation at
Co sites is not so large, eV, and so CoS_2 is possibly
categorized as an itinerant ferromagnet. It is found that the observed
electronic and magnetic behaviors of CoS_2 can be described better by the LSDA
than by the LSDA + U.Comment: 4 pages, 3 postscript figure
Characteristics of Cosmic Time
The nature of cosmic time is illuminated using Hamilton-Jacobi theory for
general relativity. For problems of interest to cosmology, one may solve for
the phase of the wavefunctional by using a line integral in superspace. Each
contour of integration corresponds to a particular choice of time hypersurface,
and each yields the same answer. In this way, one can construct a covariant
formalism where all time hypersurfaces are treated on an equal footing. Using
the method of characteristics, explicit solutions for an inflationary epoch
with several scalar fields are given. The theoretical predictions of double
inflation are compared with recent galaxy data and large angle microwave
background anisotropies.Comment: 20 pages, RevTex using Latex 2.09, Submitted to Physical Review D Two
figures included in fil
The muon g-2 in a SU(7) left-right symmetric model with mirror fermions
We have studied a left-right symmetric model with mirror fermions based in a
grand unified SU(7) model in order to account for the muon anomaly. The Higgs
sector of the model contains two Higgs doublets and the hierarchy condition
can be achieved by using two additional Higgs
singlets, one even and other odd under
-parity. We show that there is a wide range of values for the
mass parameters of the model that is consistent with the lepton
anomalies.
Radiative correction to the mass of the ordinary fermions are shown to be
small
The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant
We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at
Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young
oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the
resultant data cube, we have been able to reconstruct the full 3D structure of
the system of [O III] filaments. The majority of the ejecta form a ring of
~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We
conclude that SNR N132D is approaching the end of the reverse shock phase
before entering the fully thermalized Sedov phase of evolution. We speculate
that the ring of oxygen-rich material comes from ejecta in the equatorial plane
of a bipolar explosion, and that the overall shape of the SNR is strongly
influenced by the pre-supernova mass loss from the progenitor star. We find
tantalizing evidence of a polar jet associated with a very fast oxygen-rich
knot, and clear evidence that the central star has interacted with one or more
dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8
figure
Single-Band Model for Diluted Magnetic Semiconductors: Dynamical and Transport Properties and Relevance of Clustered States
Dynamical and transport properties of a simple single-band spin-fermion
lattice model for (III,Mn)V diluted magnetic semiconductors (DMS) is here
discussed using Monte Carlo simulations. This effort is a continuation of
previous work (G. Alvarez, Phys. Rev. Lett. 89, 277202 (2002)) where the static
properties of the model were studied. The present results support the view that
the relevant regime of J/t (standard notation) is that of intermediate
coupling, where carriers are only partially trapped near Mn spins, and locally
ordered regions (clusters) are present above the Curie temperature T_C. This
conclusion is based on the calculation of the resistivity vs. temperature, that
shows a soft metal to insulator transition near T_C, as well on the analysis of
the density-of-states and optical conductivity. In addition, in the clustered
regime a large magnetoresistance is observed in simulations. Formal analogies
between DMS and manganites are also discussed.Comment: Revtex4, 20 figures. References updated, minor changes to figures and
tex
Supersymmetric string model with 30 kappa--symmetries in an extended D=11 superspace and 30/ 32 BPS states
A supersymmetric string model in the D=11 superspace maximally extended by
antisymmetric tensor bosonic coordinates, , is proposed. It
possesses 30 -symmetries and 32 target space supersymmetries. The usual
preserved supersymmetry--symmetry correspondence suggests that it
describes the excitations of a BPS state preserving all but two
supersymmetries. The model can also be formulated in any superspace, n=32 corresponding to D=11. It may also be treated as a
`higher--spin generalization' of the usual Green--Schwarz superstring. Although
the global symmetry of the model is a generalization of the super--Poincar\'e
group, , it may be
formulated in terms of constrained OSp(2n|1) orthosymplectic supertwistors. We
work out this supertwistor realization and its Hamiltonian dynamics.
We also give the supersymmetric p-brane generalization of the model. In
particular, the supersymmetric membrane model describes
excitations of a 30/32 BPS state, as the supersymmetric
string does, while the supersymmetric 3-brane and 5-brane correspond,
respectively, to 28/32 and 24/32 BPS states.Comment: 23 pages, RevTex4. V2: minor corrections in title and terminology,
some references and comments adde
- …