1,081 research outputs found

    Fermions on an Interval: Quark and Lepton Masses without a Higgs

    Full text link
    We consider fermions on an extra dimensional interval. We find the boundary conditions at the ends of the interval that are consistent with the variational principle, and explain which ones arise in various physical circumstances. We apply these results to higgsless models of electroweak symmetry breaking, where electroweak symmetry is not broken by a scalar vacuum expectation value, but rather by the boundary conditions of the gauge fields. We show that it is possible to find a set of boundary conditions for bulk fermions that would give a realistic fermion mass spectrum without the presence of a Higgs scalar, and present some sample fermion mass spectra for the standard model quarks and leptons as well as their resonances.Comment: LaTeX, 36 pages, 5 figure

    Renormalization Group Evolution of Dirac Neutrino Masses

    Full text link
    There are good reasons why neutrinos could be Majorana particles, but there exist also a number of very good reasons why neutrinos could have Dirac masses. The latter option deserves more attention and we derive therefore analytic expressions describing the renormalization group evolution of mixing angles and of the CP phase for Dirac neutrinos. Radiative corrections to leptonic mixings are in this case enhanced compared to the quark mixings because the hierarchy of neutrino masses is milder and because the mixing angles are larger. The renormalization group effects are compared to the precision of current and future neutrino experiments. We find that, in the MSSM framework, radiative corrections of the mixing angles are for large \tan\beta comparable to the precision of future experiments.Comment: 19 pages, 5 figures; error in eq. 8 corrected, references adde

    Effects of new physics in neutrino oscillations in matter

    Get PDF
    A new flavor changing electron neutrino interaction with matter would always dominate the nu_e oscillation probability at sufficiently high neutrino energies. Being suppressed by theta_{13}, the energy scale at which the new effect starts to be relevant may be within the reach of realistic experiments, where the peculiar dependence of the signal with energy could give rise to a clear signature in the nu_e --> nu_tau channel. The latter could be observed by means of a coarse large magnetized detector by exploiting tau --> mu decays. We discuss the possibility of identifying or constraining such effects with a high energy neutrino factory. We also comment on the model independent limits on them.Comment: 11 pages, 5 figure

    Study of Dipole Resonance Strength in 12-C via the Reactions 12-C(pol.p,p'c)

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Study of High-Spin States and Three-Quasiparticle (p,π) Transitions on Light Targets

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Isospin Response of the 4-He Continuum

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions

    Get PDF
    Uncultured members of the Chloroflexi phylum are highly enriched in numerous subseafloor environments. Their metabolic potential was evaluated by reconstructing 31 Chloroflexi genomes from six different subseafloor habitats. The near ubiquitous presence of enzymes of the Wood–Ljungdahl pathway, electron bifurcation, and ferredoxin-dependent transport-coupled phosphorylation indicated anaerobic acetogenesis was central to their catabolism. Most of the genomes simultaneously contained multiple degradation pathways for complex carbohydrates, detrital protein, aromatic compounds, and hydrogen, indicating the coupling of oxidation of chemically diverse organic substrates to ubiquitous CO2 reduction. Such pathway combinations may confer a fitness advantage in subseafloor environments by enabling these Chloroflexi to act as primary fermenters and acetogens in one microorganism without the need for syntrophic H2 consumption. While evidence for catabolic oxygen respiration was limited to two phylogenetic clusters, the presence of genes encoding putative reductive dehalogenases throughout the phylum expanded the phylogenetic boundary for potential organohalide respiration past the Dehalococcoidia class

    Asteroseismology of Eclipsing Binary Stars in the Kepler Era

    Full text link
    Eclipsing binary stars have long served as benchmark systems to measure fundamental stellar properties. In the past few decades, asteroseismology - the study of stellar pulsations - has emerged as a new powerful tool to study the structure and evolution of stars across the HR diagram. Pulsating stars in eclipsing binary systems are particularly valuable since fundamental properties (such as radii and masses) can determined using two independent techniques. Furthermore, independently measured properties from binary orbits can be used to improve asteroseismic modeling for pulsating stars in which mode identifications are not straightforward. This contribution provides a review of asteroseismic detections in eclipsing binary stars, with a focus on space-based missions such as CoRoT and Kepler, and empirical tests of asteroseismic scaling relations for stochastic ("solar-like") oscillations.Comment: 28 pages, 12 figures, 2 tables; Proceedings of the AAS topical conference "Giants of Eclipse" (AASTCS-3), July 28 - August 2 2013, Monterey, C

    Charge disproportionation in YNiO3_{3} : ESR and susceptibility study

    Full text link
    We present a study of the magnetic properties of YNiO3_{3} in the paramagnetic range, above and below the metal-insulator (MI) transition. The dc susceptibility, χdc\chi_{dc} (measured up to 1000 K) is a decreasing function of T for T>T >150 K (the N\'{e}el temperature) and we observe two different Curie-Weiss regimes corresponding to the metallic and insulator phases. In the metallic phase, this behaviour seems to be associated with the small ionic radius of Y% 3+^{3+}. The value of the Curie constant for T<< TMI_{MI} allows us to discard the possibility of Ni3+^{3+} localization. An electron spin resonance (ESR) spectrum is visible in the insulator phase and only a fraction of the Ni ions contributes to this resonance. We explain the ESR and χdc\chi _{dc} behaviour for T << TMI_{MI} in terms of charge disproportionation of the type 2Ni% ^{3+}\to Ni2+^{2+}+Ni4+,^{4+}, that is compatible with the previously observed structural transition across TMI_{MI}.Comment: 10 pages, 4 figures, submitted to Phys. Rev.
    corecore