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This work provides the first comprehensive genomic insights into Chloroflexi microorganisms 

that dominate many marine subsurface environments globally. Our data revealed a near-

ubiquitous core metabolic pattern based on so far unrecognized features of the microbial Wood-

Ljungdahl pathway for CO2 reduction in conjunction with diverse organic matter degradation 

pathways. Our genomic and geochemical observations provide a metabolic explanation for the 

world-wide presence of these microorganisms in subsurface environments at high frequency, as 

well as the first insights into how deepsea environments may select for microorganisms with 

specific metabolic traits that are uncommon in terrestrial, high flux environments. The presented 

findings have significant relevance for oceanography for understanding deep ocean and marine 

subsurface sediments, for microbial biology for understanding emerging patterns of metabolism, 

and for global ecology for gaining insights into key metabolic fluxes, activities and natural 

selection in subsurface environments. 
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SUMMARY 

Uncultured members of the Chloroflexi phylum are highly enriched in numerous subseafloor 

environments. Their metabolic potential was evaluated by reconstructing 31 Chloroflexi 

genomes from 6 different subseafloor habitats. The near ubiquitous presence of enzymes of the 

Wood-Ljungdahl pathway, electron bifurcation, and ferredoxin-dependent transport-coupled 

phosphorylation indicated anaerobic acetogenesis was central to their catabolism. Most of the 

genomes simultaneously contained multiple degradation pathways for complex carbohydrates, 

detrital protein, aromatic compounds, and hydrogen, indicating the coupling of oxidation of 

chemically-diverse organic substrates to ubiquitous CO2 reduction. Such pathway combinations 

may confer a fitness advantage in subseafloor environments by enabling these Chloroflexi to act 

as primary fermenters and acetogens in one microorganism without the need for syntrophic H2 

consumption. While evidence for catabolic oxygen respiration was limited to two phylogenetic 

clusters, the presence of genes encoding putative reductive dehalogenases throughout the phylum 

expanded the phylogenetic boundary for potential organohalide respiration past the 

Dehalococcoidia class.
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INTRODUCTION 

Members of the Chloroflexi phylum have been repeatedly identified throughout marine 

subseafloor environments – including sediments, surficial and deep, as well as crustal and 

hydrothermal fluids – across depth, local redox and geochemical gradients, and habitat 

types (Inagaki et al. 2006; Durbin and Teske 2011; Reveillaud et al. 2016; Jungbluth et al. 2016). 

In marine sediments, Chloroflexi can accumulate with depth up to a frequency of 75%, based on 

Chloroflexi 16S rRNA gene frequency (Parkes et al. 2014; Durbin and Teske 2011). Subphylum-

level analyses revealed taxonomically-similar Chloroflexi members across marine environments 

with varied local oligotrophy and carbon conditions (Petro et al. 2019), indicating potential 

selection for common metabolic traits in both organic-rich and –poor environments. However, 

our understanding of the metabolic processes of these Chloroflexi and their ecophysiological 

acclimation/adaptation has so far been limited by inadequate in situ characterization and pure 

culture isolates (Parkes et al. 2014). 

The Chloroflexi phylum contains metabolically diverse microorganisms, including 

photoautotrophs (e.g., Chloroflexus aurantiacus), aerobic organotrophs (e.g., 

Thermomicrobium), obligate organohalide respirers (e.g., D. mccartyi and other Dehalococcoidia 

Class members), as well as iron and nitrate reducers (e.g., Ardenticatena maritima). Marine 

anoxic subsurface and fluid communities often have been found to contain Chloroflexi members 

that are only distantly related to organohalide-respiring Dehalococcoidia (Group 1 in 
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Fig. 1A) (Löffler et al. 2013; Parkes et al. 2014) and Anaerolineae, Caldilinea (Group 2 in 

Fig. 1A), whose cultured isolates are organoheterotrophs (Yamada et al. 2006). The relative 

enrichment of Dehalococcoidia-related Chloroflexi in these environments is particularly 

intriguing as isolated terrestrial Dehalococcoidia members are highly specialized to an exclusive 

life style of reductive dehalogenation using a unique but ill-understood mechanism of anaerobic 

energy conservation (Fincker and Spormann 2017). The metabolic diversity of extant Chloroflexi 

coupled with the lack of related subseafloor isolates makes it difficult to accurately predict 

ecophysiological traits for subseafloor Chloroflexi. 

We reconstructed and analyzed the metabolic potential of 31 near-complete Chloroflexi genomes 

from marine habitats metagenomes from 6 locations worldwide, including coastal, estuarine, and 

methane seep sediments as well as hydrothermal vent fluid, in order to predict catabolic 

processes by identifying energy-conserving strategies that may explain the enrichment of 

Chloroflexi in these environments. The resulting metabolic reconstructions hint at similar 

metabolic strategies and trade-offs that are irrespective of local redox stratification and 

oligotrophic conditions, and that may prove beneficial for sedimentary microorganisms in a 

structured, transport-limited environment such as the deep-sea subsurface. We also discovered a 

link between marine and terrestrial, as well as cultured and uncultured, Chloroflexi via the 

presence of reductive dehalogenases and the potential for an organohalide-respiring lifestyle in 

the marine subseafloor. 

[Insert Figure 1] 
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RESULTS 

Genome origins, statistics and phylogeny. 

Six marine samples representing sediments as well as crustal and hydrothermal fluids were 

selected as representatives of diverse subseafloor environments in a range of geographic 

locations with varied depth, geochemistries and local environments (Supplementary Fig. S1 and 

Supplementary Table S1). Samples included shallow sediment cores from organic-rich coastal 

and estuarine from sites in Aarhus Bay (A) in Denmark (Starnawski et al. 2017) and the White 

Oak River Estuary (W) in North Carolina (Baker et al. 2015), as well as those from methane seep 

sediments at Santa Monica Mounds (S) off the coast of California (Skennerton et al. 2017) and 

those from hydrothermal sediments in the Guaymas Basin (G) near Mexico (Dombrowski et al. 

2017). Samples also included anoxic, warm basaltic crustal fluids from drilled boreholes located 

in the flanks of the Juan de Fuca Ridge (J) (Jungbluth et al. 2016); and warm, mixed diffuse 

hydrothermal vent fluids from the ultramafic vent field Von Damm in the Mid-Cayman Rise (M) 

in the Caribbean Sea (Galambos et al. 2019). All samples were derived from anoxic 

environments, and sediment samples covered the sulfate reduction zone, the methane-to-sulfate 

transition zone and the methanogenic zone (Supplementary Table S1). Reads from 32 Illumina 

sequencing libraries from the 6 sampling sites were quality controlled, trimmed, and merged 

before assembly using MegaHit. The resulting contigs were binned using 3 binning software, and 

consensus bins were generated (see Methods). Overall, the metagenomic analysis pipeline 

yielded 31 high-quality Chloroflexi genomes that were more than 75% complete and with less 
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than 5% contamination according the CheckM single-copy gene analysis (Supplementary Table 

S2). 

Although frequently used for phylogenetic identification, 16S rRNA gene sequences are 

notoriously difficult to assemble from metagenomes (Blazejak and Schippers 2010), and partial 

16S rRNA genes were present in only 9 of the 31 genomes. Instead, PhyloPhlan (Segata et al. 

2013) and other methods relying on the concatenation and alignments of conserved prokaryotic 

proteins have been shown to accurately resolve phylogenetic placements of new genomes even 

in the absence of 16S rRNA gene sequences. PhyloPhlan analysis confirmed the genomes 

belonged to the Chloroflexi phylum (Fig. 1). More specifically, 17 genomes from sediments 

from White Oak River Estuary, Aarhus Bay, Santa Monica Mounds sediments and fluids from 

Juan de Fuca Ridge belonged to a wide clade encompassing the Class Dehalococcoidia, known 

to contain organohalide respirers (Group 1 on Fig. 1). Genome W693 clustered closely with 

Dehalococcoides species, making it the sequenced marine subseafloor Chloroflexi genome most 

closely related to terrestrial organohalide-respiring Dehalococcoidia. The other 14 genomes 

formed a separate group comprising the Anaerolineae, Ardenticatenia and Thermoflexia clades 

(Group 2 in Fig. 1). Six genomes of the Anaerolineae clade were found in sediments from 

Guaymas Basin, Aarhus Bay, White Oak River Estuary and fluids from Mid-Cayman Rise, 

respectively. Four Thermoflexia genomes were reconstructed from the Guaymas Basin 

sediments and Juan de Fuca Ridge fluids. The last four genomes, recovered from Guaymas Basin 

sediments, and Mid Cayman Rise and Juan de Fuca Ridge fluids, were related to the 
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Ardenticatenia and Caldilineae clade. Notably, the genomes analyzed in this study belonged to 

Chloroflexi phylogenetic clades that have been repeatedly found to be enriched in 16S gene 

libraries or metagenomic studies of subseafloor environments (Inagaki et al. 2006; Wasmund et 

al. 2014; Nunoura et al. 2013), making them a representative sample of the phylogenetic 

diversity of subseafloor Chloroflexi. 

 

Evidence for a catabolic role for the widespread Wood-Ljungdahl pathway. 

Analysis of the genomes revealed the widespread presence of genes encoding the Wood-

Ljungdahl pathway (WLP). The WLP is a linear pathway reducing two CO2 to form one acetate 

in four two-electron reduction steps (Fig. 2B). The WLP operates only under anoxic conditions 

and can serve multiple metabolic functions. The pathway can function i) as a reductive anabolic 

pathway for CO2 assimilation to acetyl-CoA (Ragsdale and Pierce 2008)  in methanogenic 

archaea and acetogens; ii) as a reductive catabolic pathway as shown in model acetogenic 

bacteria Moorella thermoacetica and Acetobacterium woodii (Schuchmann and Müller 2016); 

and iii) as an acetate oxidation pathway in some sulfate-reducing microorganisms (Müller, Sun, 

and Schnürer 2013) in the presence of a suitable high-redox potential external electron acceptor 

or under syntrophic conditions. A near-complete set of enzymes for a functional WLP was 

present in all Group 1 genomes and the majority of Group 2 genomes (Fig. 2D and 

Supplementary Table S4). 
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Although no unambiguous genomic marker has been reported to indicate whether the WLP is 

operating anabolically or catabolically, common features exist in the genomes of acetogenic 

bacteria relying on a reductive catabolic WLP for energy conservation including enzyme 

complexes participating in electron bifurcation and membrane-bound ferredoxin-dependent 

transport-coupled phosphorylation (Nobu, Narihiro, Rinke, et al. 2015) (Fig. 2A and 2B). Both 

A. woodii and M. thermoacetica conserve energy by coupling reduced ferredoxin oxidation to 

proton- or sodium-translocation, respectively. A. woodii expresses a seven-subunit, membrane-

spanning Rnf complex (Ferredoxin:NAD+ oxidoreductase) that is encoded by the rnfA-E 

genes (Müller et al. 2008). Alternatively, the genome of M. thermoacetica encodes a membrane-

bound energy conserving hydrogenase (Ech) as well as a heterodisulfide-reductase-associated 

ion-translocating Fd:NADH oxidoreductase (Hdr-IFO); both complexes participate in generating 

an electrochemical proton gradient (Nobu, Narihiro, Rinke, et al. 2015; Pierce et al. 2008; Nobu, 

Narihiro, Hideyuki, et al. 2015). The genomes of A089 and W693 contain homologous rnfA-E 

genes in an operon that mirrors the operon structure of A. woodii. Moreover, Hdr-IFO 

homologous complexes are present in 15 genomes, which may allow them to conserve energy 

during electron transfer from reduced ferredoxin to NAD+. These ion-translocating complexes 

are critical during hydrogenotrophic (H2 and CO2 as catabolic substrates) acetogenesis when net 

ATP formation by transport-coupled phosphorylation is the only possible mechanism for net 

ATP synthesis. However, under heterotrophic conditions, oxidation of organic substrates may 

yield ATP via substrate-level phosphorylation, alleviating the need for exclusive energy 
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conservation coupled to ferredoxin oxidation. The absence of either of these complexes, 

however, does not rule out a catabolic function of the WLP as they are also missing from the 

genome of Acetonema longum, a known acetogenic bacteria (Nobu, Narihiro, Rinke, et al. 2015). 

[Insert Figure 2] 

Another key feature of acetogenic bacteria is the presence of electron bi/confurcating complexes 

coordinating the stoichiometries and energetics of electron flux from redox reactions in the 

oxidative branch of catabolism (E’Fd/reduced Fd= -500mV, E’NAD+/NADH= -280mV, E’NADP+/NADPH= -

380mV) with the idiosyncratic four reduction steps of the WLP as well as net conservation of 

redox energy (Eº’CO2/CO = -520mV, Eº’CO2/Formate = -430mV, Eº’Methenyl-THF/Methylene-THF = -295mV 

(Schuchmann and Müller 2014), Eº’Methylene-THF/Methyl-THF = -200mV (Wohlfarth and Diekert. 

1991)) (Fig. 2BCD). Specifically, M. thermoacetica uses NfnAB, a bifurcating NADH-

dependent ferredoxin:NADP+ oxidoreductase, to generate NADPH necessary in the first 

reduction step of the WLP to form formate (Huang et al. 2012), and homologous NfnAB 

complexes were present in most Group 1 genomes. Alternatively, Thermacetogenium phaeum, a 

known acetogenic bacteria, as well as genome W589, contain PntAB, a NAD(P)+ 

transhydrogenase that relies on reverse electron transport to interconvert NADH and 

NADPH (Nobu, Narihiro, Rinke, et al. 2015). 

Overall, the co-occurrence of a complete set of enzymes of the WLP, of membrane-spanning, 

ferredoxin-dependent ion-translocating enzyme complexes, and of electron bifurcation/reverse 
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electron transport enzymes in a majority of the genomes is a strong indication that the WLP 

plays a central role in the catabolism of subseafloor Chloroflexi.  

Enzymatic redundancy in the WLP and evidence for metabolic rate/yield trade-off 

The electron carrier requirement and overall energetic efficiency of the four reduction steps of 

the WLP in acetogenic bacteria depends on the type of dehydrogenases/reductases present and 

their ability to participate in electron bifurcation. Electron bifurcation is a recently discovered 

mode of metabolic energetic conversion where a flavin-based protein complex couples an 

endergonic reduction of ferredoxin or ferredoxin-equivalent molecule to an exergonic reduction 

reaction. M. thermoacetica encodes a hexaheteromeric methylene-tetrahydrofolate reductase 

(MetF) that is proposed to couple the exergonic reduction of methylene-tetrahydrofolate with 

NADH to the endergonic reduction of a yet unknown low redox potential electron acceptor via 

electron-bifurcation (Mock et al. 2014), leading to the formation of methyl-tetrahydrofolate and a 

reduced ferredoxin equivalent. In conjunction with an energy-conserving hydrogenase (Ech) 

coupling the oxidation of this ferredoxin-equivalent electron carrier to proton translocation, the 

redox energy released during oxidation would result in the net conservation of 0.5 ATP per 

acetate formed (Mock et al. 2014). In contrast, A. woodii, which uses a non-bifurcating NADH-

dependent MetF, dissipates this redox energy as heat. (Ragsdale and Ljungdahl 1984; 

Schuchmann and Müller 2014). Therefore, we explored the genetic context of the metF genes 

found in the 31 Chloroflexi genomes to identify bifurcating vs. non-bifurcating enzymes 

operating the WLP. 
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Analysis of the 31 subseafloor Chloroflexi genomes identified 45 MetF genes, with up to four 

copies in W589 genome (Fig. 3 and Supplementary Table S4). Operons containing genes 

encoding homologues to the MetVF-MvhD-HdrABC complex from M. thermoacetica were 

identified in seven Group 2 genomes, indicating that in these microorganisms, the reduction of 

methylene-tetrahydrofolate is potentially coupled to the formation of reduced ferredoxin for 

subsequent ferredoxin-dependent energy conservation. Most Group 1 genomes only encoded the 

metFV part of the above complex. This simpler architecture, also found in C. ljungdahlii, may 

still be involved in bifurcation (Nagarajan et al. 2013) or may interact with different enzymatic 

partners (e.g. a [NiFe] hydrogenase, or homologues to the NADH-interacting part of Complex I, 

NuoEFG). Alternatively, the absence of a bifurcating MetF may reflect a rate-over-yield strategy 

in Chloroflexi where dissipating Gibbs free energy as heat may enable a faster reaction rate 

instead of a higher energetic efficiency (Mondeel et al. 2016). The presence of both types of 

MetF in a single genome, such as in the genome of S90, may also give a microorganism the 

capacity to switch between rate- and yield-mode for maximizing either energetic yield or overall 

pathway rate depending on environmental conditions. However, no obvious trend existed 

between the type of MetF found in a genome and the local geochemical conditions. 

A similar analysis of the operon structure of formate dehydrogenases (FdhA), catalyzing the first 

reduction step in the WLP from CO2 to formate, revealed the presence of a bifurcating enzyme 

complex comprising a FdhA, HylB and HylC in 20 genomes (Supplementary Fig. S4 and Table 

S4). HylB and HylC are iron-sulfur containing protein subunits that, in Clostridium 
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acidiurici (Wang et al. 2013) and Desulfotomaculum thermosubterraneum (Visser et al. 2013), 

are part of a NAD+- and ferredoxin-dependent confurcating formate dehydrogenase complex. 

Using a confurcating FdhA, the concurrent oxidation of reduced ferredoxin and NADH could 

drive the reduction of two CO2 to form two formate, which increases the thermodynamic 

efficiency of this reaction compared to a non-confurcating FdhA requiring one reduced 

ferredoxin per CO2 reduction. 

[Insert Figure 3] 

Aromatic compound metabolism. 

Near-complete anaerobic benzoyl-CoA degradation pathways to acetate were present in 8 

genomes (Fig. 1 and Supplementary Table S5). The key step of anaerobic benzoyl-CoA 

degradation is the reductive dearomatization of benzoyl-CoA to cyclohex-(di)ene-carbonyl-CoA, 

catalyzed by a benzoyl-CoA reductase (BCR) (Supplementary Fig. S3). Class I BCRs hydrolyze 

two ATP equivalents for the activation of two electrons derived from ferredoxin to reductively 

overcome the aromaticity of benzoyl-CoA, whereas class II BCRs catalyze the same reaction in 

an ATP-independent way. It has been hypothesized that class II BCRs instead rely on either 

membrane potential or electron bifurcation to activate the ferredoxin-derived electrons for 

aromatic ring reduction (Buckel and Thauer 2013). Correlating with the significant difference in 

energy requirement, class II BCRs are typically found in obligate anaerobes (e.g. Geobacter 

metallireducens) and class I BCRs are only found in facultative anaerobes (e.g. Azoarcus spp.), 
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with the exception of Ferroglobus placidus (Carmona et al. 2009; Holmes et al. 2011; Durante-

Rodrı́guez et al. 2018). 

Genes encoding class I BCR were present in genomes W156, W167, W281 and W589, and class 

II BCR genes in genomes A328 and W1033. These genomes were found across depth-driven 

geochemical gradients, and the presence of either type of BCR did not correlate with local 

geochemical conditions. Surprisingly, genomes W111 and W403 encoded genes for both a class 

I and a class II BCR, making them the first known genomes to contain both classes of BCR. The 

presence of class I BCRs in these predicted strictly anaerobic Chloroflexi is puzzling as its high 

ATP cost conflicts with the paucity of energy recovered in the WLP. Nevertheless, class I BCR 

have been previously identified in Chloroflexi from the Peru margin and, therefore, appear to be 

not unique in subseafloor Chloroflexi (Sewell, Kaster, and Spormann 2017; Wasmund et al. 

2016). 

In the anaerobic benzoyl-CoA degradation pathway, the product of benzoyl-CoA reduction, 

cyclohex-(di)ene-carbonyl-CoA, is further converted and oxidized to either 3-hydroxypimelyl-

CoA or pimelyl-CoA following a modified β-oxidation pathway, and is eventually oxidized to 

three acetyl-CoA (Supplementary Fig. S3) (Carmona et al. 2009). All genes necessary for the 

formation of 3-hydroxypimelyl-CoA were accounted for in 6 of the 8 genomes containing a 

BCR. The final conversion of hydroxypymelyl-CoA to acetyl-CoA via glutaryl-CoA is catalyzed 

by enzymes involved in the metabolism of the dicarboxylates. Most bacteria typically contain 
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multiple candidate genes participating in dicarboxylate metabolism, and the genomes in this 

study were no exception. 

Activation of aromatic substrates is typically initiated by the formation of an aryl-coenzyme A 

thioester (Carmona et al. 2009). The absence of benzoate-CoA ligase in any of the genomes 

indicates that free benzoate is unlikely to be the primary substrate for aromatic compound 

degradation in these Chloroflexi. Benzoyl-CoA is a funneling intermediate in the degradation 

pathway of a large number of aromatic compounds (Carmona et al. 2009) including 4-

hydroxybenzoate. Genome A328 encodes a 4-hydroxybenzoate-CoA ligase, and its BCR operon 

was directly followed by genes encoding a 4-hydroxybenzoyl-CoA reductase making 4-

hydroxybenzoate a potential substrate. Alternatively, putative phenylacetate-CoA ligases were 

also present in 8 genomes but no other gene associated with phenylacetate degradation was 

identified. 

Complex carbohydrate degradation. 

One of the major differences between Group 1 and Group 2 genomes was the number of genes 

predicted to participate in complex carbohydrate degradation and metabolism. A large range of 

predicted glycohydrolases involved in polysaccharide metabolism was found in Group 2 

genomes, especially in J4, whereas carbohydrate metabolism in Group 1 was mostly restricted to 

glycolysis and a partial pentose-phosphate pathway (Supplementary Table S6). 
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In canonical glycolysis, glucose is first activated to fructose-1,6-bisphosphate by the successive 

action of hexokinase, isomerase and phosphofructokinase, before being cleaved into 

glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate via a fructose-bisphosphate 

aldolase (Supplementary Fig. S3). Interestingly, fructose-bisphosphate aldolase and 

phosphofructokinase were missing from 11 genomes. Instead, some of these genomes encoded a 

fructose-6-phosphate aldolase and a dihydroxyacetone kinase, an enzyme combination that 

yields the same glycolytic products but ‘delays’ the consumption of one ATP until after the first 

glyceraldehyde-3P is formed. Another missing enzyme in half of the genomes is pyruvate kinase, 

which catalyze the last step of glycolysis. It is unlikely pyruvate kinase was missed during 

reconstruction in 50% of the genomes given that median genome completeness was 83%, hence 

some subseafloor Chloroflexi must utilize a different enzyme to form pyruvate during glycolysis. 

Finally, pyruvate can be funneled into diverse anabolic pathways or turned into acetyl-CoA via 

either a pyruvate dehydrogenase or pyruvate:flavodoxin oxidoreductase in AC_1 and AC_2 

genomes (see section on Respiratory Metabolism), or via a pyruvate:ferredoxin oxidoreductase 

as found in all other genomes. 

Import and metabolism of carbohydrates in Group 2 genomes is predicted to be more versatile. 

The median count of glycohydrolases in Group 1 and Group 2 genomes was 4 and 16 

respectively, with a maximum of 60 glycohydrolases in genome J4. Furthermore, Group 2 

genomes encode on average five carbohydrate transporters while most Group 1 genomes did not 

contain any. The microorganism J4 in particular seems to specialize in carbohydrate degradation 
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as genes needed to metabolize fructose, xylose, arabinose, rhamnose, fucose, sucrose, cellulose 

and starch were present in its genome. Comparison with other isolated or environmental 

Chloroflexi indicated that carbohydrate degradation is a metabolic trait shared by most Group 2 

Chloroflexi (Imachi et al. 2014; Fullerton, Moyer, and Löffler 2016; McIlroy et al. 2017; 

Dodsworth et al. 2014; Kale et al. 2013) and some Group 1 (Hug et al. 2013). 

Unusual amino acid degradation pathways. 

Another trait shared by some isolated Group 2 Chloroflexi is their ability to degrade amino 

acids (Dodsworth et al. 2014; Kawaichi et al. 2013; Podosokorskaya et al. 2013). Analysis of the 

31 genomes revealed that the potential for anaerobic amino acid degradation was not however 

restricted to Group 2 (Supplementary Table S7), and the distribution of potentially accessible 

substrates did not seem to match phylogenetic clustering. Overall, oxidative pathways to degrade 

13 different amino acids to central intermediates could be found. 

Interestingly, the glycine and histidine degradation pathways found in the genomes interact 

directly with the WLP. The glycine cleavage pathway found in 16 genomes (Supplementary 

Fig. S3) is based on the glycine cleavage complex which yields 5,10-methenyl-THF as a direct 

intermediate in the WLP. Similarly, the histidine degradation pathway encoded in 8 genomes 

depends on a glutamate formimidoyltransferase to catalyze the key step in transformation of 

histidine to glutamate and 5,10-methenyl-THF. The latter can be funneled into the WLP while 

the former can be further oxidized to succinyl-CoA by the successive action of glutamate 
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dehydrogenase and 2-oxoglutarate:ferredoxin oxidoreductase - both enzymes are present in the 

genomes of the 8 histidine-degrading Chloroflexi. This pathway, usually restricted to eukaryotic 

organisms (Tabor and Wyngarden 1959), produces direct intermediates to the WLP and provides 

additional support for the hypothesis that acetogenesis via the WLP is a key marker of 

subseafloor Chloroflexi. 

Respiratory metabolism restricted to two phylogenetic groups. 

[Insert Figure 4] 

Aerobic metabolism involves high redox potential cellular electron carriers such as ubiquinone 

and cytochromes, and a terminal oxygen reductase (Anraku 1988). Additionally, in 

chemoorganotrophic microorganisms, the oxidative citric acid cycle, as indicated by the presence 

of a citrate (Si)-synthase and a 2-oxo-glutarate dehydrogenase, is often present for complete 

oxidation of acetyl-CoA and for transferring reducing equivalents to NAD(P)+ for oxidative 

phosphorylation (Schägger 2002). With the exception of a 2-oxo-glutarate dehydrogenase, these 

aerobic respiration gene markers were present in nine Group 2 genomes clustering in two distinct 

phylogenetic clusters (Fig. 4, Supplementary Table S3), indicating a potential for 

chemoorganotrophic aerobic respiration. 

The first Aerobic Cluster (AC_1) was composed of deep-branching genomes from the Caldilinea 

clade whereas the second Aerobic Cluster (AC_2) formed a sister branch to the Anaerolineae 

clade. AC_1 and AC_2 differed in the predicted composition of their respiratory chains. While 

complete sets of genes for complex I (NADH-dehydrogenase), complex II (succinate 
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dehydrogenase complex) and cytochrome bd oxidases were present in both groups, genes 

encoding cytochrome c oxidases and alternative complex III (Supplementary Fig. 1) were only 

found in AC_1. Cytochrome bd oxidases generally exhibit high oxygen affinity and are 

expressed in E. coli under low oxygen conditions (Km for O2 = 3 - 8 nM) (Alexeeva, 

Hellingwerf, and Teixeira de Mattos 2002; D’mello, Hill, and Poole 1996). In contrast, 

cytochrome c oxidases are the more typical terminal oxidases in most obligate aerobic 

microorganisms (Ostermeier, Iwata, and Michel 1996). Alternative complexes III enable aerobic 

microorganisms to tune growth yield by varying the stoichiometry of proton translocation to the 

oxidation of cytochrome c during respiration (Refojo, Teixeira, and Pereira 2012). Consistent 

with our findings, the closest cultured relative of AC_1, Litorilinea aerophila (Kale et al. 2013), 

was isolated from intertidal hot springs and is strictly aerobic, whereas Aggregatilinea 

lenta (Nakahara et al. 2019), recently isolated from a continuous-flow reactor and closest relative 

to AC_2, was shown to be a facultative aerobe. Additionally, RBG-9, a Group 2 Chloroflexi 

from uranium-contaminated aquifer sediments, was also predicted to be aerobic with 

fermentative capabilities (Hug et al. 2013). Our results also demonstrated that close phylogenetic 

proximity to either AC_1 or AC_2 may be an accurate indicator for the capacity to respire 

oxygen as isolated aerobic or facultatively anaerobic Chloroflexi from diverse environments also 

clustered within AC_1 and AC_2. The presence of O2-reduction pathways in genomes from 

sampling locations with low or no oxygen is interesting and may reflect the environmental 

conditions these subseafloor Chloroflexi encountered before their sedimentation if these 
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microorganisms had been seeded from oxic pelagic environments. Alternatively, oxygen 

reduction capabilities could serve as a protective mechanism for aerotolerance during temporary 

exposure to oxygen, as is the case in some sulfate-reducing bacteria (Lamrabet et al. 2011). 

Instead of the expected 2-oxoglutarate dehydrogenase functioning in the oxidative citric acid 

cycle, all AC_1 and AC_2 genomes encoded a 2-oxoglutarate:ferredoxin oxidoreductase, an 

enzyme enabling reversible 2-oxoglutarate oxidation which is typically found in anaerobic 

microorganisms or facultative anaerobes as well as in some aerobic Archaea (Baughn 2009; 

Zhang et al. 1996). When combined with the low oxygen concentration at the sampling locations 

- estimated to be null in Juan de Fuca samples (Lin et al. 2012) and rapidly depleted at the 

sediment-water interface in Guaymas Basin sediments (Teske et al. 2016), respectively - this 

observation raises the possibility that oxygen respiration may not be the main reductive catabolic 

pathway for these microbes, and might represent merely one ecophysiological strategy. 

Furthermore, the potential for aerobic respiration did not correlate with local geochemistry and 

was found across sedimentary geochemical gradients. In contrast to AC_1 and AC_2 genomes 

that contained a citrate (Si)-synthase, most Group 1 genomes encoded a gene with high 

homology to citrate (Re)-synthase of D. mccartyi CBDB1 (Marco-Urrea et al. 2011). (Re)-citrate 

synthases, first identified in Clostridium kluyveri (Gottschalk and Barker 1966), have so far only 

been found in strictly anaerobic microorganisms (Li et al. 2007). Their presence in Group 1 

genomes therefore suggests a strictly anaerobic lifestyle for these Chloroflexi. 
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No compelling evidence for anaerobic respiration was found in any of the 31 genomes. Key 

genes for sulfate, sulfite, and/or nitrate reduction were absent. Genome J4 contained a putative 

tetrathionate reductase and a nitrous oxide reductase, and genome G439 revealed a putative 

nitrite reductase (Supplementary Table 4). Either enzyme could act as terminal reductase in a 

respiratory chain under anoxic conditions. Furthermore, genes encoding additional 

molybdopterin-dependent oxidoreductases were found in a number of genomes, but their low 

sequence similarity with any characterized protein made functional inference difficult 

(Supplementary Fig. S2). Based on phylogeny, Ardenticatena maritima (Kawaichi et al. 2013), a 

facultatively aerobic nitrate and iron-reducing member of the Chloroflexi isolated from a coastal 

hydrothermal field, is relatively close to genomes J4, G439 and AC_2, hinting that a strictly 

anaerobic respiratory metabolism may not be widespread in Group 2 subseafloor Chloroflexi.  

Reductive dehalogenases present throughout the phylum. 

Reductive dehalogenases catalyze reductive elimination of a halide from an organohalide 

compounds. They act as membrane-associated periplasmic terminal reductases during anaerobic 

organohalide respiration, and are the key enzymes of the sole catabolic pathway in members of 

the Dehalococcoidia Class (Group 1) that couples hydrogen oxidation to organohalide reduction 

and energy conservation. Catabolic reductive dehalogenases are typically found in an rdhAB 

operon encoding a large catalytic unit RdhA and a membrane anchor RdhB. Reductive 

dehalogenases can also be used by a wide variety of anaerobic or microaerophilic 
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microorganisms to access recalcitrant organohalide compounds, which can then be used in 

central metabolism (Fincker and Spormann 2017; Lohner and Spormann 2013). 

Nineteen reductive dehalogenase genes were found in 12 reconstructed genomes, with a 

maximum of four genes in genome G519 (Supplementary Table S8). Three rdhA genes found in 

genome G519 were directly upstream of a predicted rdhB, and two of them also encoded a TAT 

signal, marking these proteins for export through the cytoplasmic membrane. Three rdhA 

sequences from genomes G519, J4 and W167 also contained N-terminal transmembrane helices, 

which have been hypothesized to act as membrane anchors, negating the need for a separate 

rdhB (Atashgahi 2019). Reductive dehalogenases appear widespread across subseafloor 

Chloroflexi: their presence was not restricted to the genomes belonging to the Dehalococcoidia 

class, and no obvious phylogenic pattern could explain their phylogenetic distribution. The new 

Chloroflexi RdhA sequences scatter across phylogenetic boundaries, indicating that lateral gene 

transfer may play a role in the acquisition of reductive dehalogenases, as has been hypothesized 

in Dehalococcoides (Krajmalnik-Brown et al. 2007; McMurdie et al. 2011) and 

Desulfurospirillum (Fig. 5) (Maillard, Regeard, and Holliger 2005). 

[Insert Figure 5] 

Interestingly, the typical divide observed between Dehalococcoidia and non-Dehalococcoidia 

rdhA sequences was broken by a sequence found in Group 2 genome G519. The divergence 

between Dehalococcoidia sequences and other rdhA has been attributed to the difference in 

electron transport partner involved in reductive dehalogenation (Fincker and Spormann 2017). 
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Dehalococcoidia-type reductive dehalogenases are quinone-independent and part of an 

enzymatic electron transport complex comprised of an uptake hydrogenase, a molybdopterin-

enzyme homologous to a formate dehydrogenase and a reductive dehalogenase (Kublik et al. 

2016). The G519 genome only contained a group 3c hydrogenase, a type of soluble hydrogenase 

with undiscovered function (Vignais et al. 2001). In the absence of a typical uptake hydrogenase 

(hydrogenase group 1 or 4, see Supplementary Table S9)  or formate dehydrogenase-like protein 

in G519, the identity of the electron donating partner interacting with the Dehalococcoidia-type 

RdhA remains unknown. Hence, the potential for reductive dehalogenation appears to be 

widespread in the Chloroflexi phylum and not restricted to the Dehalococcoidia branch. 

Organohalide respiration is thought to be an important catabolic pathway in subseafloor 

microbial communities (Futagami et al. 2009), and it may indeed be present in some subseafloor 

Chloroflexi but the pathway may interact with hydrogen and other electron donors in yet 

unidentified ways given that typical group 1 uptake hydrogenases found in D. mccartyi are 

absent in most genomes (Supplementary Table S9). Alternatively, the reductive dehalogenases 

found could function to funnel halogenated organic compounds into the previously discovered 

pathways for organic matter degradation as found in S. oneidensis (Lohner and Spormann 2013). 
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DISCUSSION 

Our comprehensive study revealed the near-ubiquitous presence of a functional catabolic WLP in 

conjunction with oxidation pathways of H2 and diverse organic compounds in globally 

distributed Chloroflexi in subseafloor environments. These data generalize previous genomic 

reconstruction from three single Chloroflexi cells from the Peruvian margin (Dsc genomes in 

Fig. 1) (Sewell, Kaster, and Spormann 2017; Kaster et al. 2014) and Chloroflexi from terrestrial 

sediments (Hug et al. 2013). 

In electron acceptor-limited anoxic environments with a high carbon flux such as the rumen of 

ruminants, anaerobic digestors, or some freshwater sediments, degradation of organic matter is 

typically mediated by metabolically interdependent consortia of anaerobic microorganisms. 

These consortia include primary fermenters, syntrophs, acetogenic, and methanogenic 

microorganisms (Fig. 6A), and reflect a speciation of the overall degradation pathway into short 

pathways in distinct physiological groups driven by competition in high flux 

environments (Pfeiffer, Schuster, and Bonhoeffer 2001; Pfeiffer and Bonhoeffer 2004). 

Catabolism, in particular of carbohydrates, of specialized fermenting microorganisms depends to 

a large extent on protons as electron acceptor. In fact, removing oxidative electrons, e.g. from 

pyruvate oxidation to acetyl-CoA, from the collective cellular pool of fermentative electrons as 

H2 enables a more efficient resource utilization, since acetyl-CoA can be converted to ATP and 

acetate. However, such metabolic mode of primary and secondary fermenters requires H2 

consumptions by hydrogentrophic microorganisms such as acetogens or methanogens. 
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By using ubiquitous CO2 as electron acceptor, WLP-containing Chloroflexi can oxidize  their 

organic substrates more efficiently, e.g., to acetyl-CoA, relative to fast-growing strictly 

fermentative Prokaryotes (Fig. 6B). Moreover, using the CO2-reductive WLP to balance 

fermentative catabolic electrons instead of syntrophic interspecies H2 transfer eliminates the need 

for spatial proximity to H2-consuming microorganisms. Such spatial proximity, or absence 

thereof, may become a critical limitation in fitness of strictly fermenting microorganisms in low 

flux, slow mixing environments such as marine subsurface sediments, and opens a niche for 

fermenting microbes with an internal CO2-reductive pathway (Fig. 6 B). Finally, the multiple 

copies of MetF and formate dehydrogenases present in many of these Chloroflexi may 

accommodate the variation in cognate electron carriers for the specific reductases of the WLP 

(e.g. NADH-dependent MetF vs. NADH- and ferredoxin-dependent MetF). They may also 

provide important metabolic flexibility by accommodating multiple combinations of electron 

carriers involved in the oxidation of diverse organic substrates. In addition, the presence of 

energy-conserving and non-energy-conserving MetF enables Chloroflexi with multiple metF 

copies to switch between a rate and a yield mode; a property that can be beneficial in mixing-

limited environments. The presence of overall longer pathways in the subseafloor Chloroflexi 

and the absence of cross-feeding agrees with the theory predicting that longer cellular pathways 

leading to complete substrate degradation are being selected for in environments where resource 

concentrations are low and growth is slow (Pfeiffer and Bonhoeffer 2004). Heterotrophic 

acetogenesis therefore emerged as widespread metabolism in subseafloor Chloroflelxi; while 
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most of the metabolism of acetogenic bacteria has been studied in the context of microbial H2 

scavenging and utilization, this comprehensive analysis of subseafloor Chloroflexi revealed that 

an organotrophic fermentative life style with internal CO2 reduction seems more likely and the 

predominant mode of ‘acetogens’ in such environments (Schuchmann and Müller 2016). 

No obvious trend existed between predicted metabolism and local geochemical conditions, 

suggesting that the identified metabolic traits may be beneficial in the context of other 

constraints set by marine subsurface environments. It is possible that other traits, such a 

decelerated death rate, contribute to the predominant presence of Chloroflexi in subsurface 

sediments. Notably, the relative composition of sedimentary microbial communities, including 

the increase in Chloroflexi frequency, is determined in the first anoxic layers during 

sedimentation, just below the more dynamic bioturbation zone. This relative composition persists 

as it is buried with time with increasing restriction on chemical transport, microbial migration, 

and energy availability (Petro et al. 2019). Thus, it is unlikely that the genomic patterns and 

predicted catabolic phenotype of subseafloor Chloroflexi are the result of convergent adaptive 

evolution as they reoccur independently in different marine environments worldwide (Petro et al. 

2019). Finally, the Chloroflexi studied here belong to the same taxonomic groups that are found 

enriched in the deep marine subsurface, hence the highlighted metabolic strategies may be shared 

by the marine subsurface Chloroflexi in energy-limited environments. 

[Insert Figure 6] 
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EXPERIMENTAL PROCEDURES 

Data availability 

Genome sequences have been submitted to the GenBank databases under the Bioproject 

PRJNA605778. 

 

Sampling locations and sequencing libraries 

Six subseafloor sampling locations that had previously been identified as containing Chloroflexi 

and where metagenomic sequencing data was available were selected for this study. 

Characteristics of the sampling locations and sediments pore fluids are reported in 

Supplementary Table S1, along with the accession numbers of the raw sequencing data obtained 

at each location. In total, 32 metagenomic libraries were assembled and analyzed. 

Quality control, de novo assembly and binning of metagenomic sequences 

Raw reads from each metagenomic library were quality trimmed using BBDuk (December 

2017), and forward and reverse reads were merged if they overlapped using BBMerge (March 

2017). All clean reads originating from the same sampling sites were aggregated and co-

assembled with MegaHit (v1.1.2) (Li et al. 2015) using default parameters, and only contigs 

longer than 1 kbp were kept for downstream analysis. Contig-read alignments were computed by 

mapping the clean reads back to the assembled contigs using Bowtie2 (v2.3.4.1) (Langmead and 

Salzberg 2012) before being input to the jgi_summarize_bam_contig_depths script included with 
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the Metabat2 distribution (v2.12.1) (Kang et al., n.d.) to estimate and coverage and 

tetranucleotide frequency. To limit contamination and produce high-quality genomes, our 

binning strategies followed 3 steps. First, contigs were binned in parallel with Concoct 

(v0.4.1) (Alneberg et al. 2013), Metabat2 (v2.12.1) (Kang et al., n.d.) and Maxbin (v2.2.5) (Wu, 

Simmons, and Singer 2015) using the precomputed coverage and tetranucleotide frequencies. 

Then, a non-redundant set of bins combining the results of the 3 binning algorithms was obtained 

with DAS Tool (v1.1.0) (Sieber et al. 2018) and only Chloroflexi bins more then 75% complete 

and with less than 5% contamination, as assessed by CheckM (v1.0.11) (Parks et al. 2015), were 

kept (bin phylum was inferred from the CheckM lineage workflow and completeness was 

estimated with the taxonomic-specific workflow using the phylum Chloroflexi taxon_set). 

Finally, bins were refined with RefineM (v0.0.23) (Parks et al. 2017) using both the genomic 

property pipeline as well as the taxonomic assignment pipeline. Contigs from the resulting bins 

were scaffolded using Geneious (v10.2) assembler and reevaluated for contamination and 

completeness with CheckM, yielding 31 high-quality metagenomic-assembly genomes (referred 

simply as genomes in the text). 

Taxonomic analysis 

Genomes from isolated Chloroflexi and closely related environmental Chloroflexi were 

downloaded from NCBI and ggkBase. In the absence of 16S rRNA gene in most of the genomes, 

PhyloPhlan (v0.99) (Segata et al. 2013) was used to impute the taxonomy of the 31 new 

Chloroflexi genomes by placing them on the tree of life using a concatenated alignment of up to 
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400 of the most conserved proteins in prokaryotes. Additionally, PhyloPhlan computed a 

bootstrapped phylogenetic tree of the new genomes and their closely related isolated or 

environmental Chloroflexi. 

Metagenome annotation and functional gene analysis 

Protein coding sequence (CDS) were determined with Prokka (v1.12) (Seemann 2014) using a 

custom protein database containing all Chloroflexi proteins available in the NCBI NR database 

(February 2019). For each CDS, functional annotation resulted from the combination of 

sequence similarity searches against the KEGG database using BlastKoala (Kanehisa, Sato, and 

Morishima 2016) and Hidden-Markov Models from PFAM and TIGRFAM using the trusted cut-

off score of each model. Additionally, orthologous groups of proteins across the 31 genomes 

were computed using OrthoMCL (v2.0.9) (Li, Stoeckert, and Roos 2003) (with default 

parameters). When only some proteins in an orthologous group shared an annotation and the 

others were labelled as “hypothetical proteins”, the annotated function was chosen as final 

annotation for all proteins in the group. In addition, when proteins with different functional 

annotations were grouped together, manual curation was used to assess annotation likelihood 

using additional BlastP (Camacho et al. 2009) search similarity and InterProScan domain search 

(Jones et al. 2014; Mitchell et al. 2019). CDS and predicted functions were also subject to 

manual inspection to merge the functional annotations of the different analysis described above, 

and additional curation using InterPro domain search or sequence-similarity search against the 

NCBI NR database or other custom BlastP databases was employed when needed. Specifically, a 

This article is protected by copyright. All rights reserved.



  

BlastP database containing the bzdNOPQWXY genes from Azoarcus sp. strain CIB and the 

bamABCDEFGHIRQ genes from G. metallireducens was created to search for BCR genes. 

Glycohydrolases, glycotransferase and polysaccharide lyase were predicted using the dbCAN2 

server (Zhang et al. 2018) and only functions identified with at least 2 tools were considered. 

Functional annotations were organized into pathways from MetaCyc (Caspi et al. 2018), KEGG 

(Kanehisa and Goto 2000) or literature. 

Protein phylogenies 

All protein phylogenetic trees were constructed as follows. Amino acid sequences of interest 

were aligned using MUSCLE (Edgar 2004) and manually masked and curated to focus on shared 

amino acid positions. The refined alignment was re-aligned with MUSCLE with the refinement 

flag option. We then identified the best amino acid substitution model for this alignment with 

RaxML (Stamatakis 2014) (using the -m PROTGAMMAAUTO flag). 30 maximum-likelihood 

trees were computed under the chosen model (RaxML -#30) and the best tree was displayed with 

support for each branch calculated from bootstrap analysis (RaxML -f a -# autoMRE). 

Reductive dehalogenase phylogeny 

Reductive dehalogenase sequences were selected from the reductive dehalogenase Pfam database 

(PF13486) by clustering all sequences in the Pfam database at a 90% identity at the amino acid 

level using CD-HIT (http://weizhongli-lab.org/cd-hit/servers.php) and choosing a representative 

sequence for each cluster. A tree combining all resulting sequences with the novel Chloroflexi 
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ones was then computed as described above and is available in Supplementary Figure S4. To 

make Figure 5, nodes from the full tree were downsampled by taxonomy to only show 20% of 

the sequences per taxa. 

Operon structure analysis 

All CDS within a 5 gene window upstream and downstream of every MetF gene were extracted 

and the orthologous groups to which they belonged identified. Orthologous groups containing 

less than 3 genes were discarded to focus on shared protein functionality around metF genes. 

Presence and absence of protein from the selected orthologous groups in the gene window 

around each metF gene was recorded and the data clustered using binary distance. Varying the 

size of the gene window or the number of times a protein function needed to appear in total 

around all metF genes didn’t change substantially the clustering pattern. A similar analysis was 

carried out for formate dehydrogenase genes with a window size of 7. 
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FIGURE LEGENDS 

Figure 1 

Reconstructed phylogeny and metabolism of the 31 subseafloor Chloroflexi. A) Maximum 

likelihood phylogeny of the reconstructed Chloroflexi genomes and their closest relatives based 

on PhyloPhlan alignment of conserved bacterial proteins and using the VT + Gamma model. 

Branch support values > 50 and > 95 are denoted by an empty and black diamonds, respectively. 
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See Methods for details on alignment and phylogeny construction. Sequences from this study are 

colored according to their sampling locations, sequences derived from metagenomic studies are 

marked with a star (see (Hug et al. 2013) for RBG genomes, and (Sewell, Kaster, and Spormann 

2017) for Dsc genomes), and sequences from isolated Chloroflexi are unmarked. B) Predicted 

metabolism of the subseafloor Chloroflexi and their closest isolated relatives. Circles with a 

cross denote experimental data from culture of A. thermolimosa (Yamada et al. 2006), P. 

submarina (Imachi et al. 2014), B. fermentans (McIlroy et al. 2017), Candidatus P. 

breve (McIlroy et al. 2016), T. hugenholtzii (Dodsworth et al. 2014), L. aerophila (Kale et al. 

2013), A. martima (Kawaichi et al. 2013) and D. mccartyi (Löffler et al. 2013). Genomes 

belonging to the two Aerobic Clusters defined in the text are boxed. 

 

Figure 2 

Overview of the Wood-Ljungdahl pathway (WLP) as a catabolic reductive pathway in 

acetogenic bacteria and subseafloor Chloroflexi. A) Heterotrophic acetogenesis can be divided in 

three modules. The oxidation of organic substrates (e.g. glucose) releases CO2, and reducing 

equivalents in the form of NAD(P)H or reduced ferredoxin, as well as ATP via substrate level 

phosphorylation. In the presence of a membrane-spanning Rnf, Hdr-IFO or Ech complex, 

ferredoxin oxidation can be coupled to energy conservation. The WLP acts as an electron sink 

for 8 reducing equivalents per 2 CO2. B) The ATP-neutral WLP is a linear pathway reducing 2 

CO2 to methyl-tetrahydrofolate (THF) and CO, respectively, before condensation to acetyl-CoA. 
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The latter is subsequently converted to acetate and ATP, which is consumed in the initial 

formyltetrahydrofolate synthase reaction. C) Genes encoding key complexes for electron 

bifurcation or reverse electron transport such as NfnAB, Fdh, PntAB and potentially MetF were 

found in the genomes. D) Full gene sets for the WLP were found in the majority of the genomes. 

Abbreviations: FdhA: formate dehydrogenase, Fhs: formyltetrahydrofolate synthase, FolD: 

bifunctional methenyl-tetrahydrofolate cyclohydrolase and reductase, MetF: methylene-

tetrahydrofolate reductase, CODH / ACS: carbon monoxide dehydrogenase / acetyl-CoA 

synthase, ACS-I: acetyl-CoA synthetase. 

 

Figure 3 

Shared methylenetetrahydrofolate reductase operon architecture. Sequence names in bold gray 

and bold black come from Branch 1 and Branch 2 genomes respectively. NCBI accession 

number for MetF sequences from model acetogenic bacteria: A. longum - WP_004092543.1, A. 

woodii - WP_014355325.1, C. ljungdahlii - WP_013240365.1, M. thermoacetica - 

WP_011392705.1. See methods for clustering of operon architecture. 

 

Figure 4 
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Key genetic markers for aerobic metabolism. Genomes are ordered according to their phylogeny. 

Genomes encoding the potential for oxygen respiration cluster in two groups defined as Aerobic 

Cluster 1 and 2 (AC_1 and AC_2). 

 

Figure 5 

Maximum likelihood phylogeny of reductive dehalogenases found in the genomes using the 

PMB gamma amino acid substitution model. Sequences from isolated members of the 

Dehalococcoidia Class are marked with a star. Reductive dehalogenase sequences have been 

recovered from a wide range of phyla and environments, including activated sludge, compost, 

contaminated-aquifer sediments, deep-sea sediments and forest soil. All known obligate 

organohalide respirers belong to the Dehalococcoidia Class, with the exception of the Firmicute 

Dehalobacter restrictus (Fincker and Spormann 2017). Sequences shown here were subsampled 

from Supplementary Fig. S5. 

 

Figure 6 

Proposed metabolism of Chloroflexi in anoxic marine subsurface environments. A) In terrestrial 

anoxic (methanogenic) high carbon-flux environments, organic matter is degraded by consortia 

of anaerobic microorganisms with short catabolic pathways which are favored under competitive 

conditions. In such consortia contain primary fermenters, secondary fermenters (syntrophs), 
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acetogenic and methanogenic microorganisms, the overall organic matter degradation depends 

on a flux of electrons between microorganisms often in the form of interspecies H2 or formate 

transfer. The acetogens involved, carrying the WLP, are often specialized in H2 consumption. 

The overall pathway for conversion of organic matter to acetate is speciated into distinct 

microorganisms. B) Subseafloor Chloroflexi contain pathways of fermenters and acetogens 

integrated in one microorganism in conjunction with the CO2-reductive Wood Ljungdahl 

pathway which enables a more efficient use of a catabolic substrate. Such efficient metabolism is 

independent of an obligate interspecies H2/formate transfer to H2/formate-consuming 

microorganisms, because the WLP consumes electrons from oxidative pathways internally 

during CO2 reduction to acetate. Such integrated metabolism with an overall longer pathway may 

be more advantageous in a carbon- and mixing-limited environment. 

 

SUPPLEMENTARY MATERIAL 

Supplementary Figure S1. Location of the sampling sites. The number of reconstituted 

genomes at each site is reported in parenthesis. 

Supplementary Figure S2. Maximum likelihood tree of the DMSO reductase protein 

superfamily. Genomes are colored according to their phylogenetic group and clades of interest 

are highlighted. Most proteins from the Chloroflexi genomes did not share a high enough 

sequence similarity to infer their function. 
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Supplementary Figure S3. Pathways described in the text. 

Supplementary Figure S4. Shared formate dehydrogenase operon architecture. Sequence names 

in bold gray and bold black come from Branch 1 and Branch 2 genomes respectively. Gene 

names in italic are from model acetogenic bacteria. NCBI accession number for sequences from 

D. thermosubterraneus: SHJ75222.1, B. producta: WP_054352386., C. acidiurici: 

WP_014969038 and C. ljungdahlii: WP_013238658.1. 

Supplementary Figure S5. Maximum likelihood tree of the reductive dehalogenase protein 

family. 

Supplementary Table S1. Description of sampling locations and associated metagenomic 

sequencing libraries. 

Supplementary Table S2. Assembly and Genome statistics. 

Supplementary Table S3. Gene ID of genes involved in aerobic respiratory metabolism. 

Supplementary Table S4. Gene ID of genes associated with the WLP. 

Supplementary Table S5. Gene ID of genes involved in aromatic compound degradation. 

Supplementary Table S6. Gene ID of genes involved in carbohydrate metabolism. 

Supplementary Table S7. Gene ID of the genes involved in amino acid degradation. 
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Supplementary Table S8. Characteristics of the novel reductive dehalogenase sequences from 

the genomes. 

Supplementary Table S9. Gene ID of hydrogenase genes. 
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