1,668 research outputs found

    Non-Douglas-Kazakov phase transition of two-dimensional generalized Yang-Mills theories

    Get PDF
    In two-dimensional Yang-Mills and generalized Yang-Mills theories for large gauge groups, there is a dominant representation determining the thermodynamic limit of the system. This representation is characterized by a density the value of which should everywhere be between zero and one. This density itself is determined through a saddle-point analysis. For some values of the parameter space, this density exceeds one in some places. So one should modify it to obtain an acceptable density. This leads to the well-known Douglas-Kazakov phase transition. In generalized Yang-Mills theories, there are also regions in the parameter space where somewhere this density becomes negative. Here too, one should modify the density so that it remains nonnegative. This leads to another phase transition, different from the Douglas-Kazakov one. Here the general structure of this phase transition is studied, and it is shown that the order of this transition is typically three. Using carefully-chosen parameters, however, it is possible to construct models with phase-transition orders not equal to three. A class of these non-typical models are also studied.Comment: 11 pages, accepted for publication in Eur. Phys. J.

    Dissolving D0-brane into D2-brane with background B-field

    Full text link
    D0-branes on a D2-brane with a constant background B-field are unstable due to the presence of a tachyonic mode and expected to dissolve into the D2-brane to formulate a constant D0-charge density. In this paper we study such a dissolution process in terms of a noncommutative gauge theory. Our results show that the localized D0-brane spreads out over all of space on the D2-brane as the tachyon rolls down into a stable vacuum. D0-branes on a D2-brane can be described as unstable solitons in a noncommutative gauge theory in 2+1 dimensions in the Seiberg-Witten limit. In contrast to the case of annihilation of a non-BPS D-brane, we are free from difficulty of disappearance of DOF, since there exist open strings after the tachyon condensation. We solve an equation of motion of the gauge field numerically, and our results show that the localized soliton smears over all of noncommutative space. In addition, we evaluate distributions of D-brane charge, F-string charge, and energy density via formulas derived in Matrix theory. Our results show that the initial singularities of D0-charge and energy density are resolved by turning on the tachyon, and they disperse over the whole space on the D2-brane during the tachyon condensation process.Comment: 42 pages, 20 figures, JHEP style; references added, clarifications added in section 3.1; references adde

    Anomalous Dimension of Non-Singlet Wilson Operators at O(1/N_f) in Deep Inelastic Scattering

    Full text link
    We use the large N_f self consistency formalism to compute the O(1/Nf)O(1/N_f) critical exponent corresponding to the renormalization of the flavour non-singlet twist two Wilson operators which arise in the operator product expansion of currents in deep inelastic processes. Expanding the dd-dimensional expression in powers of ϵ\epsilon == (4d)/2(4-d)/2 the coefficients of ϵ\epsilon agree with the known two loop structure of the corresponding renormalization group function and we deduce analytic expressions for all moments, nn, at three and higher orders in perturbation theory in the \overline{\mbox{MS}} scheme at O(1/Nf)O(1/N_f).Comment: 13 Latex pages, 1 figure (available from author on request), LTH-32

    A relativistic dynamical model for pi-N scattering

    Full text link
    We present a unitary relativistic quasi-potential model for describing the low-energy pion-nucleon interaction, based on the equal time Bethe-Salpeter equation. It preserves the covariant structure of a relativistic spin 1/2 particle for the nucleon propagator, to be contrasted to other quasi-potential approximations.Comment: 4 pages, Latex2e. To appear in the Proceedings of XV Int. Conf. on Few-Body Problems in Physics (Groningen, July 1997

    Non-Commutative Instantons and the Seiberg-Witten Map

    Get PDF
    We present several results concerning non-commutative instantons and the Seiberg-Witten map. Using a simple ansatz we find a large new class of instanton solutions in arbitrary even dimensional non-commutative Yang-Mills theory. These include the two dimensional ``shift operator'' solutions and the four dimensional Nekrasov-Schwarz instantons as special cases. We also study how the Seiberg-Witten map acts on these instanton solutions. The infinitesimal Seiberg-Witten map is shown to take a very simple form in operator language, and this result is used to give a commutative description of non-commutative instantons. The instanton is found to be singular in commutative variables.Comment: 26 pages, AMS-LaTeX. v2: the formula for the commutative description of the Nekrasov-Schwarz instanton corrected (sec. 4). v3: minor correction

    The Coupling of Yang-Mills to Extended Objects

    Get PDF
    The coupling of Yang-Mills fields to the heterotic string in bosonic formulation is generalized to extended objects of higher dimension (p-branes). For odd p, the Bianchi identities obeyed by the field strengths of the (p+1)-forms receive Chern-Simons corrections which, in the case of the 5-brane, are consistent with an earlier conjecture based on string/5-brane duality.Comment: 14 Page

    The Nambu-Jona-Lasinio Model at O(1/N^2)

    Get PDF
    We write down the anomalous dimensions of the fields of the Nambu--Jona-Lasinio model or chiral Gross Neveu model with a continuous global chiral symmetry for the two cases U(1)U(1) ×\times U(1)U(1) and SU(M)SU(M) ×\times SU(M)SU(M) at O(1/N2)O(1/N^2) in a 1/N1/N expansion.Comment: 9 latex pages, 4 figures (available on request from the author), LTH-308, (2 eqns corrected

    Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)

    Full text link
    The dissociative adsorption of hydrogen on Pd(100) has been studied by ab initio quantum dynamics and ab initio molecular dynamics calculations. Treating all hydrogen degrees of freedom as dynamical coordinates implies a high dimensionality and requires statistical averages over thousands of trajectories. An efficient and accurate treatment of such extensive statistics is achieved in two steps: In a first step we evaluate the ab initio potential energy surface (PES) and determine an analytical representation. Then, in an independent second step dynamical calculations are performed on the analytical representation of the PES. Thus the dissociation dynamics is investigated without any crucial assumption except for the Born-Oppenheimer approximation which is anyhow employed when density-functional theory calculations are performed. The ab initio molecular dynamics is compared to detailed quantum dynamical calculations on exactly the same ab initio PES. The occurence of quantum oscillations in the sticking probability as a function of kinetic energy is addressed. They turn out to be very sensitive to the symmetry of the initial conditions. At low kinetic energies sticking is dominated by the steering effect which is illustrated using classical trajectories. The steering effects depends on the kinetic energy, but not on the mass of the molecules. Zero-point effects lead to strong differences between quantum and classical calculations of the sticking probability. The dependence of the sticking probability on the angle of incidence is analysed; it is found to be in good agreement with experimental data. The results show that the determination of the potential energy surface combined with high-dimensional dynamical calculations, in which all relevant degrees of freedon are taken into account, leads to a detailed understanding of the dissociation dynamics of hydrogen at a transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.

    Localized Tachyons and the g_cl conjecture

    Full text link
    We consider C/Z_N and C^2/Z_N orbifolds of heterotic string theories and Z_N orbifolds of AdS_3. We study theories with N=2 worldsheet superconformal invariance and construct RG flows. Following Harvey, Kutasov, Martinec and Moore, we compute g_cl and show that it decreases monotonically along RG flows- as conjectured by them. For the heterotic string theories, the gauge degrees of freedom do not contribute to the computation of g_cl.Comment: Corrections and clarifications made, 19 page

    Puffed Noncommutative Nonabelian Vortices

    Get PDF
    We present new solutions of noncommutative gauge theories in which coincident unstable vortices expand into unstable circular shells. As the theories are noncommutative, the naive definition of the locations of the vortices and shells is gauge-dependent, and so we define and calculate the profiles of these solutions using the gauge-invariant noncommutative Wilson lines introduced by Gross and Nekrasov. We find that charge 2 vortex solutions are characterized by two positions and a single nonnegative real number, which we demonstrate is the radius of the shell. We find that the radius is identically zero in all 2-dimensional solutions. If one considers solutions that depend on an additional commutative direction, then there are time-dependent solutions in which the radius oscillates, resembling a braneworld description of a cyclic universe. There are also smooth BIon-like space-dependent solutions in which the shell expands to infinity, describing a vortex ending on a domain wall.Comment: 21 pages, 3 eps figures. v2: published version, analytic solution adde
    corecore