49 research outputs found

    Symmetries, Horizons, and Black Hole Entropy

    Full text link
    Black holes behave as thermodynamic systems, and a central task of any quantum theory of gravity is to explain these thermal properties. A statistical mechanical description of black hole entropy once seemed remote, but today we suffer an embarrassment of riches: despite counting very different states, many inequivalent approaches to quantum gravity obtain identical results. Such ``universality'' may reflect an underlying two-dimensional conformal symmetry near the horizon, which can be powerful enough to control the thermal characteristics independent of other details of the theory. This picture suggests an elegant description of the relevant degrees of freedom as Goldstone-boson-like excitations arising from symmetry breaking by the conformal anomaly.Comment: 6 pages; first prize essay, 2007 Gravity Research Foundation essay contes

    Quantum field theory of metallic spin glasses

    Full text link
    We introduce an effective field theory for the vicinity of a zero temperature quantum transition between a metallic spin glass (``spin density glass'') and a metallic quantum paramagnet. Following a mean field analysis, we perform a perturbative renormalization-group study and find that the critical properties are dominated by static disorder-induced fluctuations, and that dynamic quantum-mechanical effects are dangerously irrelevant. A Gaussian fixed point is stable for a finite range of couplings for spatial dimensionality d>8d > 8, but disorder effects always lead to runaway flows to strong coupling for d≤8d \leq 8. Scaling hypotheses for a {\em static\/} strong-coupling critical field theory are proposed. The non-linear susceptibility has an anomalously weak singularity at such a critical point. Although motivated by a perturbative study of metallic spin glasses, the scaling hypotheses are more general, and could apply to other quantum spin glass to paramagnet transitions.Comment: 16 pages, REVTEX 3.0, 2 postscript figures; version contains reference to related work in cond-mat/950412

    From finite geometry exact quantities to (elliptic) scattering amplitudes for spin chains: the 1/2-XYZ

    Full text link
    Initially, we derive a nonlinear integral equation for the vacuum counting function of the spin 1/2-XYZ chain in the {\it disordered regime}, thus paralleling similar results by Kl\"umper \cite{KLU}, achieved through a different technique in the {\it antiferroelectric regime}. In terms of the counting function we obtain the usual physical quantities, like the energy and the transfer matrix (eigenvalues). Then, we introduce a double scaling limit which appears to describe the sine-Gordon theory on cylindrical geometry, so generalising famous results in the plane by Luther \cite{LUT} and Johnson et al. \cite{JKM}. Furthermore, after extending the nonlinear integral equation to excitations, we derive scattering amplitudes involving solitons/antisolitons first, and bound states later. The latter case comes out as manifestly related to the Deformed Virasoro Algebra of Shiraishi et al. \cite{SKAO}. Although this nonlinear integral equations framework was contrived to deal with finite geometries, we prove it to be effective for discovering or rediscovering S-matrices. As a particular example, we prove that this unique model furnishes explicitly two S-matrices, proposed respectively by Zamolodchikov \cite{ZAMe} and Lukyanov-Mussardo-Penati \cite{LUK, MP} as plausible scattering description of unknown integrable field theories.Comment: Article, 41 pages, Late

    Absence of a metallic phase in random-bond Ising models in two dimensions: applications to disordered superconductors and paired quantum Hall states

    Full text link
    When the two-dimensional random-bond Ising model is represented as a noninteracting fermion problem, it has the same symmetries as an ensemble of random matrices known as class D. A nonlinear sigma model analysis of the latter in two dimensions has previously led to the prediction of a metallic phase, in which the fermion eigenstates at zero energy are extended. In this paper we argue that such behavior cannot occur in the random-bond Ising model, by showing that the Ising spin correlations in the metallic phase violate the bound on such correlations that results from the reality of the Ising couplings. Some types of disorder in spinless or spin-polarized p-wave superconductors and paired fractional quantum Hall states allow a mapping onto an Ising model with real but correlated bonds, and hence a metallic phase is not possible there either. It is further argued that vortex disorder, which is generic in the fractional quantum Hall applications, destroys the ordered or weak-pairing phase, in which nonabelian statistics is obtained in the pure case.Comment: 13 pages; largely independent of cond-mat/0007254; V. 2: as publishe

    Survival-Time Distribution for Inelastic Collapse

    Full text link
    In a recent publication [PRL {\bf 81}, 1142 (1998)] it was argued that a randomly forced particle which collides inelastically with a boundary can undergo inelastic collapse and come to rest in a finite time. Here we discuss the survival probability for the inelastic collapse transition. It is found that the collapse-time distribution behaves asymptotically as a power-law in time, and that the exponent governing this decay is non-universal. An approximate calculation of the collapse-time exponent confirms this behaviour and shows how inelastic collapse can be viewed as a generalised persistence phenomenon.Comment: 4 pages, RevTe

    Liquid antiferromagnets in two dimensions

    Full text link
    It is shown that, for proper symmetry of the parent lattice, antiferromagnetic order can survive in two-dimensional liquid crystals and even isotropic liquids of point-like particles, in contradiction to what common sense might suggest. We discuss the requirements for antiferromagnetic order in the absence of translational and/or orientational lattice order. One example is the honeycomb lattice, which upon melting can form a liquid crystal with quasi-long-range orientational and antiferromagnetic order but short-range translational order. The critical properties of such systems are discussed. Finally, we draw conjectures for the three-dimensional case.Comment: 4 pages RevTeX, 4 figures include

    Open strings, 2D gravity and AdS/CFT correspondence

    Get PDF
    We present a detailed discussion of the duality between dilaton gravity on AdS_2 and open strings. The correspondence between the two theories is established using their symmetries and field theoretical, thermodynamic, and statistical arguments. We use the dual conformal field theory to describe two-dimensional black holes. In particular, all the semiclassical features of the black holes, including the entropy, have a natural interpretation in terms of the dual microscopic conformal dynamics. The previous results are discussed in the general framework of the Anti-de Sitter/Conformal Field Theory dualities.Comment: 22 pages, Typeset using REVTE

    Boundary Liouville theory at c=1

    Full text link
    The c=1 Liouville theory has received some attention recently as the Euclidean version of an exact rolling tachyon background. In an earlier paper it was shown that the bulk theory can be identified with the interacting c=1 limit of unitary minimal models. Here we extend the analysis of the c=1-limit to the boundary problem. Most importantly, we show that the FZZT branes of Liouville theory give rise to a new 1-parameter family of boundary theories at c=1. These models share many features with the boundary Sine-Gordon theory, in particular they possess an open string spectrum with band-gaps of finite width. We propose explicit formulas for the boundary 2-point function and for the bulk-boundary operator product expansion in the c=1 boundary Liouville model. As a by-product of our analysis we also provide a nice geometric interpretation for ZZ branes and their relation with FZZT branes in the c=1 theory.Comment: 37 pages, 1 figure. Minor error corrected, slight change in result (1.6

    On the energy-momentum tensor for a scalar field on manifolds with boundaries

    Full text link
    We argue that already at classical level the energy-momentum tensor for a scalar field on manifolds with boundaries in addition to the bulk part contains a contribution located on the boundary. Using the standard variational procedure for the action with the boundary term, the expression for the surface energy-momentum tensor is derived for arbitrary bulk and boundary geometries. Integral conservation laws are investigated. The corresponding conserved charges are constructed and their relation to the proper densities is discussed. Further we study the vacuum expectation value of the energy-momentum tensor in the corresponding quantum field theory. It is shown that the surface term in the energy-momentum tensor is essential to obtain the equality between the vacuum energy, evaluated as the sum of the zero-point energies for each normal mode of frequency, and the energy derived by the integration of the corresponding vacuum energy density. As an application, by using the zeta function technique, we evaluate the surface energy for a quantum scalar field confined inside a spherical shell.Comment: 25 pages, 2 figures, section and appendix on the surface energy for a spherical shell are added, references added, accepted for publication in Phys. Rev.
    corecore