18,689 research outputs found
Deduction of the quantum numbers of low-lying states of 6-nucleon systems based on symmetry
The inherent nodal structures of the wavefunctions of 6-nucleon systems have
been investigated. The existence of a group of six low-lying states dominated
by L=0 has been deduced. The spatial symmetries of these six states are found
to be mainly {4,2} and {2,2,2}.Comment: 8 pages, no figure
Distribution of localized states from fine analysis of electron spin resonance spectra of organic semiconductors: Physical meaning and methodology
We develop an analytical method for the processing of electron spin resonance
(ESR) spectra. The goal is to obtain the distributions of trapped carriers over
both their degree of localization and their binding energy in semiconductor
crystals or films composed of regularly aligned organic molecules [Phys. Rev.
Lett. v. 104, 056602 (2010)]. Our method has two steps. We first carry out a
fine analysis of the shape of the ESR spectra due to the trapped carriers; this
reveals the distribution of the trap density of the states over the degree of
localization. This analysis is based on the reasonable assumption that the
linewidth of the trapped carriers is predetermined by their degree of
localization because of the hyperfine mechanism. We then transform the
distribution over the degree of localization into a distribution over the
binding energies. The transformation uses the relationships between the binding
energies and the localization parameters of the trapped carriers. The
particular relation for the system under study is obtained by the Holstein
model for trapped polarons using a diagrammatic Monte Carlo analysis. We
illustrate the application of the method to pentacene organic thin-film
transistors.Comment: 14 pages, 11 figure
Magnetic structure of antiferromagnetic NdRhIn5
The magnetic structure of antiferromagnetic NdRhIn5 has been determined using
neutron diffraction. It has a commensurate antiferromagnetic structure with a
magnetic wave vector (1/2,0,1/2) below T_N = 11K. The staggered Nd moment at
1.6K is 2.6mu_B aligned along the c-axis. We find the magnetic structure to be
closely related to that of its cubic parent compound NdIn3 below 4.6K. The
enhanced T_N and the absence of additional transitions below T_N for NdRhIn5
are interpreted in terms of an improved matching of the
crystalline-electric-field (CEF), magnetocrystalline, and exchange interaction
anisotropies. In comparison, the role of these competing anisotropies on the
magnetic properties of the structurally related compound CeRhIn5 is discussed.Comment: 4 pages, 4 figure
- …