40 research outputs found

    Entanglement and squeezing in a two-mode system: theory and experiment

    Full text link
    We report on the generation of non separable beams produced via the interaction of a linearly polarized beam with a cloud of cold cesium atoms placed in an optical cavity. We convert the squeezing of the two linear polarization modes into quadrature entanglement and show how to find out the best entanglement generated in a two-mode system using the inseparability criterion for continuous variable [Duan et al., Phys. Rev. Lett. 84, 2722 (2000)]. We verify this method experimentally with a direct measurement of the inseparability using two homodyne detections. We then map this entanglement into a polarization basis and achieve polarization entanglement.Comment: submitted to J. Opt. B for a Special Issue on Foundations of Quantum Optic

    A bi-objective robust inspection planning model in a multi-stage serial production system

    Get PDF
    In this paper, a bi-objective mixed-integer linear programming (BOMILP) model for planning of an inspection process used to detect nonconforming products and malfunctioning processors in a multi-stage serial production system is presented. The model involves two inter-related decisions: 1) which quality characteristics need what kind of inspections (i.e., which-what decision) and 2) when the inspection of these characteristics should be performed (i.e., when decision). These decisions require a trade-off between the cost of manufacturing (i.e., production, inspection and scrap costs) and the customer satisfaction. Due to inevitable variations in the manufacturing systems, a global robust BOMILP (RBOMILP) is developed to tackle the inherent uncertainty of the concerned parameters (i.e., production and inspection times, errors type I and II, misadjustment and dispersion of the process). In order to optimally solve the presented RBOMILP model, a meta-heuristic algorithm, namely differential evolution (DE) algorithm, is combined with the Taguchi and Monte Carlo methods. The proposed model and solution algorithm are validated through a real industrial case from a leading automotive industry in France

    Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals

    Full text link
    The control of one light field by another, ultimately at the single photon level, is a challenging task which has numerous interesting applications within nonlinear optics and quantum information science. Due to the extremely weak direct interactions between optical photons in vacuum, this type of control can in practice only be achieved through highly nonlinear interactions within a medium. Electromagnetic induced transparency (EIT) constitutes one such means to obtain the extremely strong nonlinear coupling needed to facilitate interactions between two faint light fields. Here, we demonstrate for the first time EIT as well as all-optical EIT-based light switching using ion Coulomb crystals situated in an optical cavity. Unprecedented narrow cavity EIT feature widths down to a few kHz and a change from essentially full transmission to full absorption of the probe field within a window of only ~100 kHz are achieved. By applying a weak switching field, we furthermore demonstrate nearly perfect switching of the transmission of the probe field. These results represent important milestones for future realizations of quantum information processing devices, such as high-efficiency quantum memories, single-photon transistors and single-photon gates

    Quantum entanglement and disentanglement of multi-atom systems

    Full text link
    We present a review of recent research on quantum entanglement, with special emphasis on entanglement between single atoms, processing of an encoded entanglement and its temporary evolution. Analysis based on the density matrix formalism are described. We give a simple description of the entangling procedure and explore the role of the environment in creation of entanglement and in disentanglement of atomic systems. A particular process we will focus on is spontaneous emission, usually recognized as an irreversible loss of information and entanglement encoded in the internal states of the system. We illustrate some certain circumstances where this irreversible process can in fact induce entanglement between separated systems. We also show how spontaneous emission reveals a competition between the Bell states of a two qubit system that leads to the recently discovered "sudden" features in the temporal evolution of entanglement. An another problem illustrated in details is a deterministic preparation of atoms and atomic ensembles in long-lived stationary squeezed states and entangled cluster states. We then determine how to trigger the evolution of the stable entanglement and also address the issue of a steered evolution of entanglement between desired pairs of qubits that can be achieved simply by varying the parameters of a given system.Comment: Review articl

    Community of Practice Theory and Process Modelling: Two Tools for Better Collaboration in Research Projects

    No full text
    Part 1: Knowledge-Based Performance ImprovementInternational audienceToday, research projects are often multi-disciplinary involving several research teams. For such projects to be a success implies, for these teams, to work together in an efficient manner. To improve collaboration we propose to work on two complementary aspects. The first aspect exploits the community of practice theory in order to define the knowledge to share and the way to share it. The second aspect applies process modelling in order to model research processes at different level of granularity (project, task, protocol). In this way, process uncertainty is reduced and a shared vision of the process is worked out. We illustrate our proposition on the SEPOLBE project that involves four research teams and a company to develop bio admixtures for concrete
    corecore