312,678 research outputs found

    Green's function method for single-particle resonant states in relativistic mean field theory

    Full text link
    Relativistic mean field theory is formulated with the Green's function method in coordinate space to investigate the single-particle bound states and resonant states on the same footing. Taking the density of states for free particle as a reference, the energies and widths of single-particle resonant states are extracted from the density of states without any ambiguity. As an example, the energies and widths for single-neutron resonant states in 120^{120}Sn are compared with those obtained by the scattering phase-shift method, the analytic continuation in the coupling constant approach, the real stabilization method and the complex scaling method. Excellent agreements are found for the energies and widths of single-neutron resonant states.Comment: 20 pages, 7 figure

    Flux rope proxies and fan-spine structures in active region NOAA 11897

    Full text link
    Employing the high-resolution observations from the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS), we statistically investigate flux rope proxies in NOAA AR 11897 from 14-Nov-2013 to 19-Nov-2013 and display two fan-spine structures in this AR. For the first time, we detect flux rope proxies of NOAA 11897 for total 30 times in 4 different locations. These flux rope proxies were either tracked in both lower and higher temperature wavelengths or only detected in hot channels. Specially, none of these flux rope proxies was observed to erupt, but just faded away gradually. In addition to these flux rope proxies, we firstly detect a secondary fan-spine structure. It was covered by dome-shaped magnetic fields which belong to a larger fan-spine topology. These new observations imply that considerable amounts of flux ropes can exist in an AR and the complexity of AR magnetic configuration is far beyond our imagination.Comment: 8 pages, 8 figures, Accepted for publication in A&

    Deformation compatibility in a single crystalline Ni superalloy

    Get PDF
    Deformation in materials is often complex and requires rigorous understanding to predict engineering component lifetime. Experimental understanding of deformation requires utilization of advanced characterization techniques, such as high spatial resolution digital image correlation (HR-DIC) and high angular resolution electron backscatter diffraction (HR-EBSD), combined with clear interpretation of their results to understand how a material has deformed. In this study, we use HR-DIC and HR-EBSD to explore the mechanical behaviour of a single-crystal nickel alloy and to highlight opportunities to understand the complete deformations state in materials. Coupling of HR-DIC and HR-EBSD enables us to precisely focus on the extent which we can access the deformation gradient, F, in its entirety and uncouple contributions from elastic deformation gradients, slip and rigid body rotations. Our results show a clear demonstration of the capabilities of these techniques, found within our experimental toolbox, to underpin fundamental mechanistic studies of deformation in polycrystalline materials and the role of microstructure

    Control of beam propagation in optically written waveguides beyond the paraxial approximation

    Full text link
    Beam propagation beyond the paraxial approximation is studied in an optically written waveguide structure. The waveguide structure that leads to diffractionless light propagation, is imprinted on a medium consisting of a five-level atomic vapor driven by an incoherent pump and two coherent spatially dependent control and plane-wave fields. We first study propagation in a single optically written waveguide, and find that the paraxial approximation does not provide an accurate description of the probe propagation. We then employ coherent control fields such that two parallel and one tilted Gaussian beams produce a branched waveguide structure. The tilted beam allows selective steering of the probe beam into different branches of the waveguide structure. The transmission of the probe beam for a particular branch can be improved by changing the width of the titled Gaussian control beam as well as the intensity of the spatially dependent incoherent pump field.Comment: 10 pages, 9 figure
    • …
    corecore