63 research outputs found

    Evapotranspiration and evaporation/transpiration partitioning with dual source energy balance models in agricultural lands

    Get PDF
    EvapoTranspiration (ET) is an important component of the water cycle, especially in semi-arid lands. Its quantification is crucial for a sustainable management of scarce water resources. A way to quantify ET is to exploit the available surface temperature data from remote sensing as a signature of the surface energy balance, including the latent heat flux. Remotely sensed energy balance models enable to estimate stress levels and, in turn, the water status of most continental surfaces. The evaporation and transpiration components of ET are also just as important in agricultural water management and ecosystem health monitoring. Single temperatures can be used with dual source energy balance models but rely on specific assumptions on raw levels of plant water stress to get both components out of a single source of information. Additional information from remote sensing data are thus required, either something specifically related to evaporation (such as surface water content) or transpiration (such as PRI or fluorescence). This works evaluates the SPARSE dual source energy balance model ability to compute not only total ET, but also water stress and transpiration/evaporation components. First, the theoretical limits of the ET component retrieval are assessed through a simulation experiment using both retrieval and prescribed modes of SPARSE with the sole surface temperature. A similar work is performed with an additional constraint, the topsoil surface soil moisture level, showing the significant improvement on the retrieval. Then, a flux dataset acquired over rainfed wheat is used to check the robustness of both stress levels and ET retrievals. In particular, retrieval of the evaporation and transpiration components is assessed in both conditions (forcing by the sole temperature or the combination of temperature and soil moisture). In our example, there is no significant difference in the performance of the total ET retrieval, since the evaporation rate retrieved from the sole surface temperature is already fairly close to the one we can reconstruct from observed surface soil moisture time series, but current work is underway to test it over other plots.</p

    Simulation of the radiative behaviour of an urban quater of Marseille

    No full text
    International audienc

    Driving factors of the directional variability of thermal infrared signal in temperate regions

    No full text
    Land surface temperature (LST) is a good indicator of the land surface state. The measurement of LST is however prone to directional anisotropy which may severely affect the interpretation of the measurements if it is not corrected. This study aims at determining and describing the impact of various factors on anisotropy of continuous crops at mid-latitudes. The SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model is used as a data generator of directional anisotropy since it enables exploring a very large range of meteorological, biochemical and geometrical conditions. An original indicator, the standard deviation of anisotropy in principal plane, is used in order to investigate the impact of the tested variables and parameters. We found that anisotropy is, at first order, related to seasonal trends, in relation to the amount of incident radiation and the solar zenith angle. Then the geometrical structure of the canopy modifies the anisotropy (LAI, LADF, hot spot parameter) followed by the coupling between the water status of the soil and the stress of canopy. Wind speed which is known for having a significant impact on temperature level has a very limited influence on anisotropy. An analysis of the amplitude of anisotropy in the principal and perpendicular planes (from -50 degrees to 50 degrees zenith) showed that anisotropy can reach up to 11 degrees C and similar to 3.5 degrees C respectively. The impact of satellite orbit on anisotropy is also discussed and it is found that, given the latitudes and the season, the anisotropy can severely affect measurements. This is particularly true when the satellite measurements are acquired in a configuration close to the solar principal plane, which often occur at low latitude. These results are of great help in the context of developing simple methods which could then be integrated into satellite data processing algorithms
    • …
    corecore