396 research outputs found

    Shared features and reciprocal complementation of the Chlamydomonas and Arabidopsis microbiota

    Get PDF
    Microscopic algae release organic compounds to the region immediately surrounding their cells, known as the phycosphere, constituting a niche for colonization by heterotrophic bacteria. These bacteria take up algal photoassimilates and provide beneficial functions to their host, in a process that resembles the establishment of microbial communities associated with the roots and rhizospheres of land plants. Here, we characterize the microbiota of the model alga Chlamydomonas reinhardtii and reveal extensive taxonomic and functional overlap with the root microbiota of land plants. Using synthetic communities derived from C. reinhardtii and Arabidopsis thaliana, we show that phycosphere and root bacteria assemble into taxonomically similar communities on either host. We show that provision of diffusible metabolites is not sufficient for phycosphere community establishment, which additionally requires physical proximity to the host. Our data suggest the existence of shared ecological principles driving the assembly of the A. thaliana root and C. reinhardtii phycosphere microbiota, despite the vast evolutionary distance between these two photosynthetic organisms

    Psi-series solutions of the cubic H\'{e}non-Heiles system and their convergence

    Full text link
    The cubic H\'enon-Heiles system contains parameters, for most values of which, the system is not integrable. In such parameter regimes, the general solution is expressible in formal expansions about arbitrary movable branch points, the so-called psi-series expansions. In this paper, the convergence of known, as well as new, psi-series solutions on real time intervals is proved, thereby establishing that the formal solutions are actual solutions

    Having Fun in Learning Formal Specifications

    Full text link
    There are many benefits in providing formal specifications for our software. However, teaching students to do this is not always easy as courses on formal methods are often experienced as dry by students. This paper presents a game called FormalZ that teachers can use to introduce some variation in their class. Students can have some fun in playing the game and, while doing so, also learn the basics of writing formal specifications in the form of pre- and post-conditions. Unlike existing software engineering themed education games such as Pex and Code Defenders, FormalZ takes the deep gamification approach where playing gets a more central role in order to generate more engagement. This short paper presents our work in progress: the first implementation of FormalZ along with the result of a preliminary users' evaluation. This implementation is functionally complete and tested, but the polishing of its user interface is still future work

    Construction of Special Solutions for Nonintegrable Systems

    Full text link
    The Painleve test is very useful to construct not only the Laurent series solutions of systems of nonlinear ordinary differential equations but also the elliptic and trigonometric ones. The standard methods for constructing the elliptic solutions consist of two independent steps: transformation of a nonlinear polynomial differential equation into a nonlinear algebraic system and a search for solutions of the obtained system. It has been demonstrated by the example of the generalized Henon-Heiles system that the use of the Laurent series solutions of the initial differential equation assists to solve the obtained algebraic system. This procedure has been automatized and generalized on some type of multivalued solutions. To find solutions of the initial differential equation in the form of the Laurent or Puiseux series we use the Painleve test. This test can also assist to solve the inverse problem: to find the form of a polynomial potential, which corresponds to the required type of solutions. We consider the five-dimensional gravitational model with a scalar field to demonstrate this.Comment: LaTeX, 14 pages, the paper has been published in the Journal of Nonlinear Mathematical Physics (http://www.sm.luth.se/math/JNMP/

    Constraints on new interactions from neutron scattering experiments

    Full text link
    Constraints for the constants of hypothetical Yukawa-type corrections to the Newtonian gravitational potential are obtained from analysis of neutron scattering experiments. Restrictions are obtained for the interaction range between 10^{-12} and 10^{-7} cm, where Casimir force experiments and atomic force microscopy are not sensitive. Experimental limits are obtained also for non-electromagnetic inverse power law neutron-nucleus potential. Some possibilities are discussed to strengthen these constraints.Comment: 18 pages, 3 figure

    Marine and freshwater micropearls: biomineralization producing strontium-rich amorphous calcium carbonate inclusions is widespread in the genus <i>Tetraselmis</i> (Chlorophyta)

    Get PDF
    Unicellular algae play important roles in the biogeochemical cycles of numerous elements, particularly through the biomineralization capacity of certain species (e.g., coccolithophores greatly contributing to the organic carbon pump of the oceans), and unidentified actors of these cycles are still being discovered. This is the case of the unicellular alga Tetraselmis cordiformis (Chlorophyta) that was recently discovered to form intracellular mineral inclusions, called micropearls, which had been previously overlooked. These intracellular inclusions of hydrated amorphous calcium carbonates (ACCs) were first described in Lake Geneva (Switzerland) and are the result of a novel biomineralization process. The genus Tetraselmis includes more than 30 species that have been widely studied since the description of the type species in 1878.The present study shows that many other Tetraselmis species share this biomineralization capacity: 10 species out of the 12 tested contained micropearls, including T. chui, T. convolutae, T. levis, T. subcordiformis, T. suecica and T. tetrathele. Our results indicate that micropearls are not randomly distributed inside the Tetraselmis cells but are located preferentially under the plasma membrane and seem to form a definite pattern, which differs among species. In Tetraselmis cells, the biomineralization process seems to systematically start with a rod-shaped nucleus and results in an enrichment of the micropearls in Sr over Ca (the Sr∕Ca ratio is more than 200 times higher in the micropearls than in the surrounding water or growth medium). This concentrating capacity varies among species and may be of interest for possible bioremediation techniques regarding radioactive 90Sr water pollution.The Tetraselmis species forming micropearls live in various habitats, indicating that this novel biomineralization process takes place in different environments (marine, brackish and freshwater) and is therefore a widespread phenomenon.</p
    corecore