107 research outputs found

    Immobilisation of engineered molecules on electrodes and optical surfaces,

    Get PDF
    ABSTRACT Monolayers of genetically modified proteins with an hexahistidine tag, (His)6, were obtained by using a Ni -NTA chelator synthesized on gold sputtered surfaces (via sulphide bonds), or on gold and graphite (via sililating agents) working electrodes of screen-printed devices. Two kinds of proteins were produced and purified for this study: a) a recombinant antibody, derived from the 'single chain Fv' ( scFv) format; b) a photosystem II (PSII) core complex isolated from the mutant strain CP43-H of the thermophilic cyanobacterium Synechococcus elongatus. An scFv, previously isolated from a synthetic 'phage display' library, was further engineered with an alkaline phosphatase activity genetically added between the carbossi-terminal of the scFvs and the (His)6 to allow direct measurement of immobilisation. Renewable specific binding of (His)6-proteins to gold and graphite surfaces and fast and sensitive electrochemical or optical detection of analytes were obtained. Additionally, "on chip" protein preconcentration was conveniently achieved for biosensing purposes, starting from crude unpurified extracts and avoiding protein purification steps

    Timing Analysis of the 2022 Outburst of the Accreting Millisecond X-Ray Pulsar SAX J1808.4-3658: Hints of an Orbital Shrinking

    Get PDF
    We present a pulse timing analysis of NICER observations of the accreting millisecond X-ray pulsar SAX J1808.4-3658 during the outburst that started on 2022 August 19. Similar to previous outbursts, after decaying from a peak luminosity of ≃1 × 1036 erg s-1 in about a week, the pulsar entered a ~1 month long reflaring stage. Comparison of the average pulsar spin frequency during the outburst with those previously measured confirmed the long-term spin derivative of Μ˙SD=−(1.15±0.06)×10−15 Hz s-1, compatible with the spin-down torque of a ≈1026 G cm3 rotating magnetic dipole. For the first time in the last twenty years, the orbital phase evolution shows evidence for a decrease of the orbital period. The long-term behavior of the orbit is dominated by an ~11 s modulation of the orbital phase epoch consistent with a ~21 yr period. We discuss the observed evolution in terms of a coupling between the orbit and variations in the mass quadrupole of the companion star

    Rosina - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis

    Get PDF
    The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) will answer important questions posed by the mission's main objectives. After Giotto, this will be the first time the volatile part of a comet will be analyzed in situ. This is a very important investigation, as comets, in contrast to meteorites, have maintained most of the volatiles of the solar nebula. To accomplish the very demanding objectives through all the different phases of the comet's activity, ROSINA has unprecedented capabilities including very wide mass range (1 to >300 amu), very high mass resolution (m/Δ m > 3000, i.e. the ability to resolve CO from N2 and 13C from 12CH), very wide dynamic range and high sensitivity, as well as the ability to determine cometary gas velocities, and temperature. ROSINA consists of two mass spectrometers for neutrals and primary ions with complementary capabilities and a pressure sensor. To ensure that absolute gas densities can be determined, each mass spectrometer carries a reservoir of a calibrated gas mixture allowing in-flight calibration. Furthermore, identical flight-spares of all three sensors will serve for detailed analysis of all relevant parameters, in particular the sensitivities for complex organic molecules and their fragmentation patterns in our electron bombardment ion source

    Highly Significant Detection of X-Ray Polarization from the Brightest Accreting Neutron Star Sco X-1

    Get PDF
    The Imaging X-ray Polarimetry Explorer measured with high significance the X-ray polarization of the brightest Z-source, Sco X-1, resulting in the nominal 2–8 keV energy band in a polarization degree of 1.0% ± 0.2% and a polarization angle of 8° ± 6° at a 90% confidence level. This observation was strictly simultaneous with observations performed by NICER, NuSTAR, and Insight-HXMT, which allowed for a precise characterization of its broadband spectrum from soft to hard X-rays. The source has been observed mainly in its soft state, with short periods of flaring. We also observed low-frequency quasiperiodic oscillations. From a spectropolarimetric analysis, we associate a polarization to the accretion disk at <3.2% at 90% confidence level, compatible with expectations for an electron scattering dominated optically thick atmosphere at the Sco X-1 inclination of ∌44°; for the higher-energy Comptonized component, we obtain a polarization of 1.3% ± 0.4%, in agreement with expectations for a slab of Thomson optical depth of ∌7 and an electron temperature of ∌3 keV. A polarization rotation with respect to previous observations by OSO-8 and PolarLight, and also with respect to the radio-jet position angle, is observed. This result may indicate a variation of the polarization with the source state that can be related to relativistic precession or a change in the corona geometry with the accretion flow
    • 

    corecore