226,462 research outputs found

    Systolic VLSI for Kalman filters

    Get PDF
    A novel two-dimensional parallel computing method for real-time Kalman filtering is presented. The mathematical formulation of a Kalman filter algorithm is rearranged to be the type of Faddeev algorithm for generalizing signal processing. The data flow mapping from the Faddeev algorithm to a two-dimensional concurrent computing structure is developed. The architecture of the resulting processor cells is regular, simple, expandable, and therefore naturally suitable for VLSI chip implementation. The computing methodology and the two-dimensional systolic arrays are useful for Kalman filter applications as well as other matrix/vector based algebraic computations

    Distance-two labelings of digraphs

    Full text link
    For positive integers jkj\ge k, an L(j,k)L(j,k)-labeling of a digraph DD is a function ff from V(D)V(D) into the set of nonnegative integers such that f(x)f(y)j|f(x)-f(y)|\ge j if xx is adjacent to yy in DD and f(x)f(y)k|f(x)-f(y)|\ge k if xx is of distant two to yy in DD. Elements of the image of ff are called labels. The L(j,k)L(j,k)-labeling problem is to determine the λj,k\vec{\lambda}_{j,k}-number λj,k(D)\vec{\lambda}_{j,k}(D) of a digraph DD, which is the minimum of the maximum label used in an L(j,k)L(j,k)-labeling of DD. This paper studies λj,k\vec{\lambda}_{j,k}- numbers of digraphs. In particular, we determine λj,k\vec{\lambda}_{j,k}- numbers of digraphs whose longest dipath is of length at most 2, and λj,k\vec{\lambda}_{j,k}-numbers of ditrees having dipaths of length 4. We also give bounds for λj,k\vec{\lambda}_{j,k}-numbers of bipartite digraphs whose longest dipath is of length 3. Finally, we present a linear-time algorithm for determining λj,1\vec{\lambda}_{j,1}-numbers of ditrees whose longest dipath is of length 3.Comment: 12 pages; presented in SIAM Coference on Discrete Mathematics, June 13-16, 2004, Loews Vanderbilt Plaza Hotel, Nashville, TN, US

    Pulse Profiles, Spectra and Polarization Characteristics of Non-Thermal Emissions from the Crab-Like Pulsars

    Full text link
    We discuss non-thermal emission mechanism of the Crab-like pulsars with both a two-dimensional electrodynamical study and a three-dimensional model. We investigate the emission process in the outer gap accelerator. In the two-dimensional electrodynamical study, we solve the Poisson equation of the accelerating electric field in the outer gap and the equation of motion of the primary particles with the synchrotron and the curvature radiation process and the pair-creation process. We show a solved gap structure which produces a consistent gamma-ray spectrum with EGRET observation. Based on the two-dimensional model, we conduct a three-dimensional emission model to calculate the synchrotron and the inverse-Compton processes of the secondary pairs produced outside the outer gap. We calculate the pulse profiles, the phase-resolved spectra and the polarization characteristics in optical to γ\gamma-ray bands to compare the observation of the Crab pulsar and PSR B0540-69. For the Crab pulsar, we find that the outer gap geometry extending from near the stellar surface to near the light cylinder produces a complex morphology change of the pulse profiles as a function of the photon energy. This predicted morphology change is quite similar with that of the observations. The calculated phase-resolved spectra are consistent with the data through optical to the γ\gamma-ray bands. We demonstrate that the 10\sim20 % of the polarization degree in the optical emissions from the Crab pulsar and the Vela pulsar are explained by the synchrotron emissions with the particle gyration motion.Comment: 39 pages, 11 figures, Accepted for publication in Ap

    Articulated elastic-loop roving vehicles

    Get PDF
    Prototype vehicle features exceptional obstacle-negotiating and slope-climbing capabilities plus high propulsive efficiency. Concept should interest designers of polar or ocean-bottom research vehicles. Also, its large footprint and low ground pressure will minimize ecological damage on terrain with low bearing strength, as in off-the-road application

    Space station molecular sieve development

    Get PDF
    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants

    3D model of amphioxus steroid receptor complexed with estradiol

    Get PDF
    The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER[alpha] are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER[alpha] in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid binding to nuclear receptors
    corecore