352 research outputs found

    Simple model for post seismic ionospheric disturbances above an earthquake epicentre and along connecting magnetic field lines

    Get PDF
    The detection of ionospheric disturbances associated with seismic activity is one of the main objectives of the DEMETER micro-satellite. Its scientific payload provides a comprehensive set of electron and ion measurements. The present work describes a simple model of post-seismic disturbances in the ionosphere above the epicentre. Following a major seism, the neutral atmosphere is assumed to be subject to an acoustic pulse propagating upward, to high altitudes. By coupling this perturbation to the two-dimensional ionospheric model SAMI2 it is then possible to calculate the variations in a number of plasma parameters in the plume region and along connecting magnetic field lines, for an event of representative magnitude. The feasibility of identifying the signature of seismic events from satellite observations is then assessed in view of representative DEMETER measurements and of their natural variability

    Wave and plasma measurements and GPS diagnostics of the main ionospheric trough as a hybrid method used for Space Weather purposes

    Get PDF
    The region of the main ionospheric trough is a unique region of the ionosphere, where different types of waves and instabilities can be generated. This region of the ionosphere acts like a lens, focusing a variety of indicators from the equator of plasmapause and local ionospheric plasma. This paper reports the results of monitoring the mid-latitude trough structure, dynamics and wave activity. For these purposes, the data gathered by the currently-operating DEMETER satellite and past diagnostics located on IK-19, Apex, and MAGION-3 spacecraft, as well as TEC measurements were used. A global-time varying picture of the ionospheric trough was reconstructed using the sequence of wave spectra registered and plasma measurements in the top-side ionosphere. The authors present the wave activity from ULF frequency band to the HF frequency detected inside the trough region and discuss its properties during geomagnetic disturbances. It is thought that broadband emissions are correlated with low frequency radiation, which is excited by the wave-particle interaction in the equatorial plasmapause and moves to the ionosphere along the geomagnetic field line. In the ionosphere, the suprathermal electrons can interact with these electrostatic waves and excite electron acoustic waves or HF longitudinal plasma waves. <br><br> Furthermore, the electron density trough can provide useful data on the magnetosphere ionosphere dynamics and morphology and, in consequence, can be used for Space Weather purposes

    Demeter high resolution observations of the ionospheric thermal plasma response to magnetospheric energy input during the magnetic storm of November 2004

    Get PDF
    High resolution Demeter plasma and wave observations were available during one of the geomagnetic storms of November 2004 when the ionospheric footprint of the plasmasphere was pushed below 64 degrees in the midnight sector. We report here onboard observations of thermal/suprathermal plasma and HF electric field variations with a temporal resolution of 0.4 s, which corresponds to a spatial resolution of 3 km. Local perturbations of the plasma parameters at the altitude of 730 km are analysed with respect to the variation of the field-aligned currents, electron and proton precipitation and large-scale electric fields, measured in-situ by Demeter and by remote optical methods from the IMAGE/Polar satellites. <br><br> Flow monitoring in the 21:00 and 24:00 MLT sectors during storm conditions reveals two distinct regions of O<sup>+</sup> outflow, i.e. the region of the field-aligned currents, which often comprises few layers of opposite currents, and the region of velocity reversal toward dusk at sub-auroral latitudes. Average upward O<sup>+</sup> velocities are identical in both local time sectors and vary between 200 and 450 m s<sup>−1</sup>, with an exception of a few cases of higher speed (~1000 m s<sup>−1</sup>) outflow, observed in the midnight sector. Each individual outflow event does not indicate any heating process of the thermal O<sup>+</sup> population. On the contrary, the temperature of the O<sup>+</sup>, outflowing from auroral latitudes, is found to be even colder than that of the ambient ion plasma. The only ion population which is observed to be involved in the heating is the O<sup>+</sup> with energies a few times higher than the thermal energy. Such a population was detected at sub-auroral latitudes in the region of duskward flow reversal. Its temperature raises up to a few eV inside the layer of sheared velocity. <br><br> A deep decrease in the H<sup>+</sup> density at heights and latitudes, where, according to the IRI model, these ions are expected to comprise ~50% of the positive charge, indicates that the thermospheric balance between atomic oxygen and hydrogen was re-established in favour of oxygen. As a consequence, the charge exchange between oxygen and hydrogen does not effectively limit the O<sup>+</sup> production in the regions of the electron precipitation. According to Demeter observations, the O<sup>+</sup> concentration is doubled inside the layers with upward currents (downward electrons). Such a density excess creates the pressure gradient which drives the plasma away from the overdense regions, i.e. first, from the layers of precipitating electrons and then upward along the layers of downward current. <br><br> In addition, the downward currents are identified to be the source regions of hiss emissions, i.e. electron acoustic mode excited via the Landau resonance in the multi-component electron plasma. Such instabilities, which are often observed in the auroral region at 2–5 Earth radii, but rarely at ionospheric altitudes, are believed to be generated by an electron beam which moves through the background plasma with a velocity higher than its thermal velocity

    Calibration of parent and fragment ion detection rates in Rosettas ROSINA/DFMS mass spectrometer

    Get PDF
    The Double Focusing Mass Spectrometer DFMS embarked on the European Space Agency’s Rosetta mission as part of the ROSINA instrument suite. It boasts a high mass resolution and a high sensitivity, which have guaranteed spectacular discoveries during Rosetta’s rendez-vous with comet 67P/Churyumov-Gerasimenko. This paper describes the DFMS data calibration procedure for determining the parent and fragment ion count rates in the neutral mode, which serve as the basis for retrieving the neutral gas densities. A new approach to computing secondary electron yields is presented. Attention is given to an analysis of the mass peak shapes, which change with magnet temperature. Discrete counting statistical effects also affect the peak shape at low counts. If not accounted for, changes of mass peak shape can induce errors of up to 20% on the determination of the ion fluxes. An assessment of the different sources of uncertainty on the obtained count rates and ratios of count rates is presented

    Possible seismo-ionosphere perturbations revealed by VLF signals collected on ground and on a satellite

    Get PDF
    The results of the monitoring of three VLF/LF signals collected in Petropavlovsk station (Kamchatka, Russia) and one VLF signal collected on board of the DEMETER French satellite are presented. Two periods of the seismic activity occurred in the Japan-Kamchatka area during November–December 2004 and July–September 2005 were investigated and the earthquakes with M≥6.0 in the Japan-Kamchatka area, located inside one or more of the third Fresnel zones of the three radio paths were considered. The ground data were analysed using residual signal of phase <i>dP</i> or of amplitude <i>dA</i>, defined as the difference between the signal and the average of few quiet days (±5 days) immediately preceding or following the current day. Also the satellite data were processed by a method based on the difference between the real signal and the reference one, but in order to obtain this last signal it was necessary to construct previously a model of the signal distribution over the selected area. The method consists: (a) in averaging all the data available in the considered region over a period characterized by low level seismicity, regardless of the global disturbances, in particular, of the magnetic activity; (b) in computing a polynomial expression for the surface as a function of the longitude and the latitude. The model well describes the real data in condition of their completeness and in absence of magnetic storms or seismic forcing. In the quoted periods of seismic activity clear anomalies both in the ground and in satellite data were revealed. The influence of the geomagnetic activity cannot to be excluded, but the seismic forcing seems more probable

    Preliminary interpretation of Titan plasma interaction as observed by the Cassini Plasma Spectrometer: Comparisons with Voyager 1

    Get PDF
    The Cassini Plasma Spectrometer (CAPS) instrument observed the plasma environment at Titan during the Cassini orbiter's TA encounter on October 26, 2004. Titan was in Saturn's magnetosphere during the Voyager 1 flyby and also during the TA encounter. CAPS measurements from this encounter are compared with measurements made by the Voyager 1 Plasma Science Instrument (PLS). The comparisons focus on the composition and nature of ambient and pickup ions. They lead to: A) the major ion components of Saturn's magnetosphere in the vicinity of Titan are H+, H-2(+) and O+/CH4+ ions; B) finite gyroradius effects are apparent in ambient O+ ions as the result of their absorption by Titan's extended atmosphere; C) the principal pickup ions are composed of H+, H-2(+), N+/CH2+, CH4+, and N-2(+); D) the pickup ions are in narrow energy ranges; and E) there is clear evidence of the slowing down of background ions due to pickup ion mass loading
    corecore