220 research outputs found
Recommended from our members
Synthesis of Non-molecular Nitrogen Phases at Mbar Pressures by Direct Laser-heating
Direct laser heating of molecular N2 to above 1400 K at 120-130 GPa results in the formation of a reddish amorphous phase and a transparent crystalline solid above 2000 K. Raman and x-ray data confirm that the transparent phase is cubic-gauche nitrogen (cg-N), while the reddish color of the amorphous phase might indicate the presence of N=N dish bonds. The quenched amorphous phase is stable down to at least 70GPa, analogous to cg-N, and could be a new non-molecular phase or an extension of the already known {eta}-phase. A chemo-physical phase diagram is presented which emphasizes the difference between pressure- and temperature-induced transitions from molecular to non-molecular solids, as found in other low Z systems
Recommended from our members
Quantum-Based Atomistic Simulation of Metals at Extreme Conditions
First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for bridging the quantum-atomistic gap from density-functional quantum mechanics to large scale atomistic simulation in metals and alloys. In directionally-bonded bcc transition metals, advanced generation model GPT or MGPT potentials based on canonical d bands have been developed for Ta, Mo and V and successfully applied to a wide range of thermodynamic and mechanical properties at both ambient and extreme conditions of pressure and temperature, including high-pressure phase transitions, multiphase equation of state; melting and solidification; thermoelasticity; and the atomistic simulation of point defects, dislocations and grain boundaries needed for the multiscale modeling of plasticity and strength. Recent algorithm improvements have also allowed an MGPT implementation beyond canonical bands to achieve increased accuracy, extension to f-electron actinide metals, and high computational speed. A further advance in progress is the development temperature-dependent MGPT potentials that subsume electron-thermal contributions to high-temperature properties
Electronic and structural properties of vacancies on and below the GaP(110) surface
We have performed total-energy density-functional calculations using
first-principles pseudopotentials to determine the atomic and electronic
structure of neutral surface and subsurface vacancies at the GaP(110) surface.
The cation as well as the anion surface vacancy show a pronounced inward
relaxation of the three nearest neighbor atoms towards the vacancy while the
surface point-group symmetry is maintained. For both types of vacancies we find
a singly occupied level at mid gap. Subsurface vacancies below the second layer
display essentially the same properties as bulk defects. Our results for
vacancies in the second layer show features not observed for either surface or
bulk vacancies: Large relaxations occur and both defects are unstable against
the formation of antisite vacancy complexes. Simulating scanning tunneling
microscope pictures of the different vacancies we find excellent agreement with
experimental data for the surface vacancies and predict the signatures of
subsurface vacancies.Comment: 10 pages, 6 figures, Submitted to Phys. Rev. B, Other related
publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
First principles elastic constants and electronic structure of alpha-Pt_2Si and PtSi
We have carried out a first principles study of the elastic properties and
electronic structure for two room-temperature stable Pt silicide phases,
tetragonal alpha-Pt_2Si and orthorhombic PtSi. We have calculated all of the
equilibrium structural parameters for both phases: the a and c lattice
constants for alpha-Pt_2Si and the a, b, and c lattice constants and four
internal structural parameters for PtSi. These results agree closely with
experimental data. We have also calculated the zero-pressure elastic constants,
confirming prior results for pure Pt and Si and predicting values for the six
(nine) independent, non-zero elastic constants of alpha-Pt_2Si (PtSi). These
calculations include a full treatment of all relevant internal displacements
induced by the elastic strains, including an explicit determination of the
dimensionless internal displacement parameters for the three strains in
alpha-Pt_2Si for which they are non-zero. We have analyzed the trends in the
calculated elastic constants, both within a given material as well as between
the two silicides and the pure Pt and Si phases. The calculated electronic
structure confirms that the two silicides are poor metals with a low density of
states at the Fermi level, and consequently we expect that the Drude component
of the optical absorption will be much smaller than in good metals such as pure
Pt. This observation, combined with the topology found in the first principles
spin-orbit split band structure, suggests that it may be important to include
the interband contribution to the optical absorption, even in the infrared
region.Comment: v1: 27 pages, 7 figures, 13 tables submitted to Phys. Rev. B v2: 10
pages, 4 figures, 12 tables (published in Phys. Rev B) contains only
ab-initio calculations; valence force field models are now in a separate
paper: cond-mat/010618
Global Intraurban Intake Fractions for Primary Air Pollutants from Vehicles and Other Distributed Sources
We model intraurban intake fraction (iF) values for distributed ground-level emissions in all 3646 global cities with more than 100,000 inhabitants, encompassing a total population of 2.0 billion. For conserved primary pollutants, population-weighted median, mean, and interquartile range iF values are 26, 39, and 14-52 ppm, respectively, where 1 ppm signifies 1 g inhaled/t emitted. The global mean urban iF reported here is roughly twice as large as previous estimates for cities in the United States and Europe. Intake fractions vary among cities owing to differences in population size, population density, and meteorology. Sorting by size, population-weighted mean iF values are 65, 35, and 15 ppm, respectively, for cities with populations larger than 3, 0.6-3, and 0.1-0.6 million. The 20 worldwide megacities (each >10 million people) have a population-weighted mean iF of 83 ppm. Mean intraurban iF values are greatest in Asia and lowest in land-rich high-income regions. Country-average iF values vary by a factor of 3 among the 10 nations with the largest urban populations
A Search for Energy Minimized Sequences of Proteins
In this paper, we present numerical evidence that supports the notion of minimization in the sequence space of proteins for a target conformation. We use the conformations of the real proteins in the Protein Data Bank (PDB) and present computationally efficient methods to identify the sequences with minimum energy. We use edge-weighted connectivity graph for ranking the residue sites with reduced amino acid alphabet and then use continuous optimization to obtain the energy-minimizing sequences. Our methods enable the computation of a lower bound as well as a tight upper bound for the energy of a given conformation. We validate our results by using three different inter-residue energy matrices for five proteins from protein data bank (PDB), and by comparing our energy-minimizing sequences with 80 million diverse sequences that are generated based on different considerations in each case. When we submitted some of our chosen energy-minimizing sequences to Basic Local Alignment Search Tool (BLAST), we obtained some sequences from non-redundant protein sequence database that are similar to ours with an E-value of the order of 10-7. In summary, we conclude that proteins show a trend towards minimizing energy in the sequence space but do not seem to adopt the global energy-minimizing sequence. The reason for this could be either that the existing energy matrices are not able to accurately represent the inter-residue interactions in the context of the protein environment or that Nature does not push the optimization in the sequence space, once it is able to perform the function
- …