49,108 research outputs found

    Decoherence and fidelity in ion traps with fluctuating trap parameters

    Get PDF
    We consider two different kinds of fluctuations in an ion trap potential: external fluctuating electrical fields, which cause statistical movement (``wobbling'') of the ion relative to the center of the trap, and fluctuations of the spring constant, which are due to fluctuations of the ac-component of the potential applied in the Paul trap for ions. We write down master equations for both cases and, averaging out the noise, obtain expressions for the heating of the ion. We compare our results to previous results for far-off resonance optical traps and heating in ion traps. The effect of fluctuating external electrical fields for a quantum gate operation (controlled-NOT) is determined and the fidelity for that operation derived.Comment: 11 pages, 4 figure

    Entanglement in the Dicke model

    Get PDF
    We show how an ion trap, configured for the coherent manipulation of external and internal quantum states, can be used to simulate the irreversible dynamics of a collective angular momentum model known as the Dicke model. In the special case of two ions, we show that entanglement is created in the coherently driven steady state with linear driving. For the case of more than two ions we calculate the entanglement between two ions in the steady state of the Dicke model by tracing over all the other ions. The entanglement in the steady state is a maximum for the parameter values corresponding roughly to a bifurcation of a fixed point in the corresponding semiclassical dynamics. We conjecture that this is a general mechanism for entanglement creation in driven dissipative quantum systems.Comment: Minor changes: Reference added and references correcte

    The challenging scales of the bird: Shuttle tile structural integrity

    Get PDF
    The principal design issues, tests, and analyses required to solve the tile integrity problem on the space shuttle orbiters are addressed. Proof testing of installed tiles is discussed along with an airflow test of special tiles. Orbiter windshield tiles are considered in terms of changes necessary to ensure acceptable margins of safety for flight

    Evidence for charged critical behavior in the pyrochlore superconductor RbOs2O6

    Full text link
    We analyze magnetic penetration depth data of the recently discovered superconducting pyrochlore oxide RbOs2O6. Our results strongly suggest that in RbOs2O6 charged critical fuctuations dominate the temperature dependence of the magnetic penetration depth near Tc. This is in contrast to the mean-field behavior observed in conventional superconductors and the uncharged critical behavior found in nearly optimally doped cuprate superconductors. However, this finding agrees with the theoretical predictions for charged criticality and the charged criticality observed in underdoped YBa2Cu3O6.59.Comment: 5 pages, 4 figure

    Virtual chemical reactions for drug design

    Get PDF
    Two methods for the fast, fragment-based combinatorial molecule assembly were developed. The software COLIBREE® (Combinatorial Library Breeding) generates candidate structures from scratch, based on stochastic optimization [1]. Result structures of a COLIBREE design run are based on a fixed scaffold and variable linkers and side-chains. Linkers representing virtual chemical reactions and side-chain building blocks obtained from pseudo-retrosynthetic dissection of large compound databases are exchanged during optimization. The process of molecule design employs a discrete version of Particle Swarm Optimization (PSO) [2]. Assembled compounds are scored according to their similarity to known reference ligands. Distance to reference molecules is computed in the space of the topological pharmacophore descriptor CATS [3]. In a case study, the approach was applied to the de novo design of potential peroxisome proliferator-activated receptor (PPAR gamma) selective agonists. In a second approach, we developed the formal grammar Reaction-MQL [4] for the in silico representation and application of chemical reactions. Chemical transformation schemes are defined by functional groups participating in known organic reactions. The substructures are specified by the linear Molecular Query Language (MQL) [5]. The developed software package contains a parser for Reaction-MQL-expressions and enables users to design, test and virtually apply chemical reactions. The program has already been used to create combinatorial libraries for virtual screening studies. It was also applied in fragmentation studies with different sets of retrosynthetic reactions and various compound libraries

    Experimental active and passive dosimetry systems for the NASA Skylab program

    Get PDF
    Active and passive dosimetry instrumentation to measure absorbed dose, charged particle spectra, and linear energy transfer spectra inside the command module and orbital workshop on the Skylab program were developed and tested. The active dosimetry system consists of one integral unit employing both a tissue equivalent ionization chamber and silicon solid state detectors. The instrument measures dose rates from 0.2 millirad/hour to 25 rads/hour, linear energy transfer spectra from 2.8 to 42.4 Kev/micron, and the proton and alpha particle energy spectra from 0.5 to 75 Mev. The active dosimeter is equipped with a portable radiation sensor for use in astronaut on-body and spacecraft shielding surveys during passage of the Skylab through significant space radiations. Data are transmitted in real time or are recorded by onboard spacecraft tape recorder for rapid evaluation of the radiation levels. The passive dosimetry systems consist of twelve (12) hard-mounted assemblies, each containing a variety of passive radiation sensors which are recoverable at the end of the mission for analysis

    Implications of the isotope effects on the magnetization, magnetic torque and susceptibility

    Full text link
    We analyze the magnetization, magnetic torque and susceptibility data of La2-xSrxCu(16,18)O4 and YBa2(63,65)CuO7-x near Tc in terms of the universal 3D-XY scaling relations. It is shown that the isotope effect on Tc mirrors that on the anisotropy. Invoking the generic behavior of the anisotropy the doping dependence of the isotope effects on the critical properties, including Tc, correlation lengths and magnetic penetration depths are traced back to a change of the mobile carrier concentration.Comment: 5 pages, 3 figure

    A study of the dynamics of the Intertropical Convergence Zone (ITCZ) in a symmetric atmosphere-ocean model

    Get PDF
    A numerical model of the circulation of a coupled axisymmetric atmosphere-ocean system was constructed to investigate the physical factors governing the location and intensity of the Intertropical Convergence Zone (ITCZ) over oceans and over land. The results of several numerical integrations are presented to illustrate the interaction of the individual atmospheric and oceanic circulations. It is shown that the ITCA cannot be located at the equator because the atmosphere-ocean system is unstable for lateral displacements of the ITCA from an equilibrium position at the equator
    • …
    corecore