30,142 research outputs found

    Charmless decays B->pipi, piK and KK in broken SU(3)symmetry

    Full text link
    Charmless B decay modes B→ππ,πKB \to \pi \pi, \pi K and KKKK aresystematically investigated with and without flavor SU(3) symmetry. Independent analyses on ππ\pi \pi and πK\pi K modes both favor a large ratio between color-suppressed tree (CC) and tree (T)T) diagram, which suggests that they are more likely to originate from long distance effects. The sizes of QCD penguin diagrams extracted individually from ππ\pi\pi, πK\pi K and KKKK modes are found to follow a pattern of SU(3) breaking in agreement with the naive factorization estimates. Global fits to these modes are done under various scenarios of SU(3)relations. The results show good determinations of weak phase γ\gamma in consistency with the Standard Model (SM), but a large electro-weak penguin (P_{\tmop{EW}}) relative to T+CT + C with a large relative strong phase are favored, which requires an big enhancement of color suppressed electro-weak penguin (P_{\tmop{EW}}^C) compatible in size but destructively interfering with P_{\tmop{EW}} within the SM, or implies new physics. Possibility of sizable contributions from nonfactorizable diagrams such as WW-exchange (EE), annihilation(AA) and penguin-annihilation diagrams(PAP_A) are investigated. The implications to the branching ratios and CP violations in KKK Kmodes are discussed.Comment: 27 pages, 9 figures, reference added, to appear in Phy.Rev.

    Kinetics of spin coherence of electrons in nn-type InAs quantum wells under intense terahertz laser fields

    Full text link
    Spin kinetics in nn-type InAs quantum wells under intense terahertz laser fields is investigated by developing fully microscopic kinetic spin Bloch equations via the Floquet-Markov theory and the nonequilibrium Green's function approach, with all the relevant scattering, such as the electron-impurity, electron-phonon, and electron-electron Coulomb scattering explicitly included. We find that a {\em finite} steady-state terahertz spin polarization induced by the terahertz laser field, first predicted by Cheng and Wu [Appl. Phys. Lett. {\bf 86}, 032107 (2005)] in the absence of dissipation, exists even in the presence of all the scattering. We further discuss the effects of the terahertz laser fields on the spin relaxation and the steady-state spin polarization. It is found that the terahertz laser fields can {\em strongly} affect the spin relaxation via hot-electron effect and the terahertz-field-induced effective magnetic field in the presence of spin-orbit coupling. The two effects compete with each other, giving rise to {\em non-monotonic} dependence of the spin relaxation time as well as the amplitude of the steady state spin polarization on the terahertz field strength and frequency. The terahertz field dependences of these quantities are investigated for various impurity densities, lattice temperatures, and strengths of the spin-orbit coupling. Finally, the importance of the electron-electron Coulomb scattering on spin kinetics is also addressed.Comment: 17 pages, 16 figures, Phys. Rev. B 78, 2008, in pres
    • …
    corecore