17 research outputs found

    Experimental evidence of s-wave superconductivity in bulk CaC6_{6}

    Full text link
    The temperature dependence of the in-plane magnetic penetration depth, λab(T)\lambda_{ab}(T), has been measured in a c-axis oriented polycrystalline CaC6_{6} bulk sample using a high-resolution mutual inductance technique. A clear exponential behavior of λab(T)\lambda_{ab}(T) has been observed at low temperatures, strongly suggesting isotropic s-wave pairing. Data fit using the standard BCS theory yields λab(0)=(720±80)\lambda_{ab}(0)=(720\pm 80) Angstroem and Δ(0)=(1.79±0.08)\Delta(0)=(1.79\pm 0.08) meV. The ratio 2Δ(0)/kBTc=(3.6±0.2)2\Delta(0)/k_{_B}T_{c}=(3.6\pm 0.2) gives indication for a conventional weakly coupled superconductor.Comment: To appear in Phys. Rev. Let

    Superconductivity of bulk CaC6

    Full text link
    We have obtained bulk samples of the graphite intercalation compound, CaC6, by a novel method of synthesis from highly oriented pyrolytic graphite. The crystal structure has been completely determined showing that it is the only member of the MC6, metal-graphite compounds, which has rhombohedral symmetry. We have clearly shown the occurrence of superconductivity in the bulk sample at 11.5K, using magnetization measurements.Comment: 8 pages of text + 4 figures = 12 page

    Short-range magnetic order, irreversibility and giant magnetoresistance near the triple points in the (

    No full text
    We have studied pseudo-layered ZrMn6Sn6-xGax intermetallics (0.55 ≀ x ≀ 0.81) using magnetic, magnetoresistivity and powder neutron diffraction measurements. All the alloys studied have magnetic ordering temperatures in the 450-490 K temperature range. They present complex temperature-dependent partially disordered magnetic structures whose ferromagnetic component develops upon increasing the Ga content. ZrMn6Sn6-xGax alloys with x ≀ 0.69 are essentially collinear antiferromagnets at high-temperature and adopt antifan-like arrangements at low temperature. For x ≄ 0.75, the alloys order ferromagnetically and evolve to a fan-like structure upon cooling. The intermediate compositions (x = 0.71 and 0.73) present a canted fan-like order at high temperature and another kind of antifan-like arrangement at low temperature. The degree of short-range order tends to increase upon approaching the intermediate compositions. The (x, T) phase diagram contains two triple points (x ~ 0.70; T ~ 460 K and x ~ 0.74; T ~ 455 K), where the paramagnetic, an incommensurate and a commensurate phases meet, which possess some of the features of Lifshitz point. Irreversibilities manifest in the low-temperature magnetization curves at the antifan-fan or fan-ferromagnetic boundaries as well as inside the fan region. Giant magnetoresistance is observed, even above room temperature

    Magnetic properties and

    No full text
    We have synthesized LiMn6Sn6, the first RMn6Sn6 compound involving an alkali metal as R element. It crystallizes in the hexagonal (P6/mmm) HfFe6Ge6-type structure. From magnetic measurements and powder neutron diffraction experiments it is found that LiMn6Sn6 magnetically orders at TC = 380 K in a simple easy-plane ferromagnetic structure (mMn = 2.58 ÎŒB at 2 K). The 119Sn Mössbauer spectrum recorded at 5 K indicates that the tin nuclei experience huge hyperfine fields (as large as 35 T). Electronic structure calculations are used to gain information about the microscopic origin of both the hyperfine field and electric field gradient at the Sn nuclei. The former arises due to spin-dependent hybridization between the 5s states of Sn and the 3d states of Mn. The latter comes from the 5p charge density close to the nucleus, whose anisotropy is mainly produced through directional interactions with the 3d states of the first Mn neighbors. Comparison between experimental quadrupole splittings and theoretical electric field gradients allows us to propose a value of Q=−11.2±0.7 fm2Q = - 11.2 \pm 0.7~{\rm fm}^{2} for the quadrupole moment of the first excited state (I= 3/2) of the 119Sn nucleus

    Time-of-flight secondary ion mass spectrometry of fullerenes

    No full text
    corecore