12,338 research outputs found
Energy loss mechanism for suspended micro- and nanoresonators due to the Casimir force
A so far not considered energy loss mechanism in suspended micro- and
nanoresonators due to noncontact acoustical energy loss is investigated
theoretically. The mechanism consists on the conversion of the mechanical
energy from the vibratory motion of the resonator into acoustic waves on large
nearby structures, such as the substrate, due to the coupling between the
resonator and those structures resulting from the Casimir force acting over the
separation gaps. Analytical expressions for the resulting quality factor Q for
cantilever and bridge micro- and nanoresonators in close proximity to an
underlying substrate are derived and the relevance of the mechanism is
investigated, demonstrating its importance when nanometric gaps are involved
A Neutrosophic Description Logic
Description Logics (DLs) are appropriate, widely used, logics for managing
structured knowledge. They allow reasoning about individuals and concepts, i.e.
set of individuals with common properties. Typically, DLs are limited to
dealing with crisp, well defined concepts. That is, concepts for which the
problem whether an individual is an instance of it is yes/no question. More
often than not, the concepts encountered in the real world do not have a
precisely defined criteria of membership: we may say that an individual is an
instance of a concept only to a certain degree, depending on the individual's
properties. The DLs that deal with such fuzzy concepts are called fuzzy DLs. In
order to deal with fuzzy, incomplete, indeterminate and inconsistent concepts,
we need to extend the fuzzy DLs, combining the neutrosophic logic with a
classical DL. In particular, concepts become neutrosophic (here neutrosophic
means fuzzy, incomplete, indeterminate, and inconsistent), thus reasoning about
neutrosophic concepts is supported. We'll define its syntax, its semantics, and
describe its properties.Comment: 18 pages. Presented at the IEEE International Conference on Granular
Computing, Georgia State University, Atlanta, USA, May 200
Stability of atomic clocks based on entangled atoms
We analyze the effect of realistic noise sources for an atomic clock
consisting of a local oscillator that is actively locked to a spin-squeezed
(entangled) ensemble of atoms. We show that the use of entangled states can
lead to an improvement of the long-term stability of the clock when the
measurement is limited by decoherence associated with instability of the local
oscillator combined with fluctuations in the atomic ensemble's Bloch vector.
Atomic states with a moderate degree of entanglement yield the maximal clock
stability, resulting in an improvement that scales as compared to the
atomic shot noise level.Comment: 4 pages, 2 figures, revtex
Superfluid-insulator transition in a periodically driven optical lattice
We demonstrate that the transition from a superfluid to a Mott insulator in
the Bose-Hubbard model can be induced by an oscillating force through an
effective renormalization of the tunneling matrix element. The mechanism
involves adiabatic following of Floquet states, and can be tested
experimentally with Bose-Einstein condensates in periodically driven optical
lattices. Its extension from small to very large systems yields nontrivial
information on the condensate dynamics.Comment: 4 pages, 4 figures, RevTe
First results from the CALYPSO IRAM-PdBI survey. I. Kinematics of the inner envelope of NGC1333-IRAS2A
The structure and kinematics of Class 0 protostars on scales of a few hundred
AU is poorly known. Recent observations have revealed the presence of Keplerian
disks with a diameter of 150-180 AU in L1527-IRS and VLA1623A, but it is not
clear if such disks are common in Class 0 protostars. Here we present
high-angular-resolution observations of two methanol lines in NGC1333-IRAS2A.
We argue that these lines probe the inner envelope, and we use them to study
the kinematics of this region. Our observations suggest the presence of a
marginal velocity gradient normal to the direction of the outflow. However, the
position velocity diagrams along the gradient direction appear inconsistent
with a Keplerian disk. Instead, we suggest that the emission originates from
the infalling and perhaps slowly rotating envelope, around a central protostar
of 0.1-0.2 M. If a disk is present, it is smaller than the disk of
L1527-IRS, perhaps suggesting that NGC1333-IRAS2A is younger.Comment: Accepted for publication in A&A letter
Penrose-Onsager Criterion Validation in a One-Dimensional Polariton Condensate
We perform quantum tomography on one-dimensional polariton condensates,
spontaneously occurring in linear disorder valleys in a CdTe planar microcavity
sample. By the use of optical interferometric techniques, we determine the
first-order coherence function and the amplitude and phase of the order
parameter of the condensate, providing a full reconstruction of the single
particle density matrix for the polariton system. The experimental data are
used as input to theoretically test the consistency of Penrose-Onsager
criterion for Bose-Einstein condensation in the framework of nonequilibrium
polariton condensates. The results confirm the pertinence and validity of the
criterion for a non equilibrium condensed gas.Comment: 5 pages, 4 figure
- …