22,708 research outputs found

    Caging phenomena in reactions: Femtosecond observation of coherent, collisional confinement

    Get PDF
    We report striking observations of coherent caging of iodine, above the B state dissociation threshold, by single collisions with rare gas atoms at room-temperature. Despite the random nature of the solute–solvent interaction, the caged population retains coherence of the initially prepared unbound wave packet. We discuss some new concepts regarding dynamical coherent caging and the one-atom cage effect

    Nonlinear ac response of anisotropic composites

    Full text link
    When a suspension consisting of dielectric particles having nonlinear characteristics is subjected to a sinusoidal (ac) field, the electrical response will in general consist of ac fields at frequencies of the higher-order harmonics. These ac responses will also be anisotropic. In this work, a self-consistent formalism has been employed to compute the induced dipole moment for suspensions in which the suspended particles have nonlinear characteristics, in an attempt to investigate the anisotropy in the ac response. The results showed that the harmonics of the induced dipole moment and the local electric field are both increased as the anisotropy increases for the longitudinal field case, while the harmonics are decreased as the anisotropy increases for the transverse field case. These results are qualitatively understood with the spectral representation. Thus, by measuring the ac responses both parallel and perpendicular to the uniaxial anisotropic axis of the field-induced structures, it is possible to perform a real-time monitoring of the field-induced aggregation process.Comment: 14 pages and 4 eps figure

    Effects of Solution, Soil and Sand Cultures on Nodulation and Growth of Phasey Bean

    Get PDF
    Plants of phasey bean (Macroptilium lathyroides cv. Murray) were grown in nitrogen-free nutrient solution, sod, or sand culture in a naturally-Nt glasshouse. Nodulation, dry matter accumulation in plant parts, and seed yields were assessed. Partitioning of symbiotic nitrogen into various plant parts during vegetative and reproductive growth stages was also determined. In all culture media, nodule number and size increased with plant age but the rate of increase was generally greater in solution than in the other cultures. In sand culture, the dry weight per nodule and per plant, and plant growth were significantly suppressed. Although tap root elongation was consistently better in solution than soil or sand culture, leaf development and dry matter accumulation in roots and stems were enhanced by solution culture only during flowering and fruiting stage. Seed yields were significantly increased by solution culture, an effect apparently associated with increased symbiotic nitrogen fixation. During vegetative growth, nitrogen accumulated largely in the leaves and stems but pods were major sinks of nitrogen during the reproductive growth stage. The benefits and applications of solution culture in the study of nodule development and collection of root samples for acetylene reduction assays are discussed

    Theory of the "honeycomb chain-channel" reconstruction of Si(111)3x1

    Full text link
    First-principles electronic-structure methods are used to study a structural model for Ag/Si(111)3x1 recently proposed on the basis of transmission electron diffraction data. The fully relaxed geometry for this model is far more energetically favorable than any previously proposed, partly due to the unusual formation of a Si double bond in the surface layer. The calculated electronic properties of this model are in complete agreement with data from angle-resolved photoemission and scanning tunneling microscopy.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett (the ugly postscript error on page 4 has now been repaired
    corecore