56 research outputs found

    Semiclassical form factor for spectral and matrix element fluctuations of multi-dimensional chaotic systems

    Get PDF
    We present a semiclassical calculation of the generalized form factor which characterizes the fluctuations of matrix elements of the quantum operators in the eigenbasis of the Hamiltonian of a chaotic system. Our approach is based on some recently developed techniques for the spectral form factor of systems with hyperbolic and ergodic underlying classical dynamics and f=2 degrees of freedom, that allow us to go beyond the diagonal approximation. First we extend these techniques to systems with f>2. Then we use these results to calculate the generalized form factor. We show that the dependence on the rescaled time in units of the Heisenberg time is universal for both the spectral and the generalized form factor. Furthermore, we derive a relation between the generalized form factor and the classical time-correlation function of the Weyl symbols of the quantum operators.Comment: some typos corrected and few minor changes made; final version in PR

    Quantum measurements without macroscopic superpositions

    Full text link
    We study a class of quantum measurement models. A microscopic object is entangled with a macroscopic pointer such that each eigenvalue of the measured object observable is tied up with a specific pointer deflection. Different pointer positions mutually decohere under the influence of a bath. Object-pointer entanglement and decoherence of distinct pointer readouts proceed simultaneously. Mixtures of macroscopically distinct object-pointer states may then arise without intervening macroscopic superpositions. Initially, object and apparatus are statistically independent while the latter has pointer and bath correlated according to a metastable local thermal equilibrium. We obtain explicit results for the object-pointer dynamics with temporal coherence decay in general neither exponential nor Gaussian. The decoherence time does not depend on details of the pointer-bath coupling if it is smaller than the bath correlation time, whereas in the opposite Markov regime the decay depends strongly on whether that coupling is Ohmic or super-Ohmic.Comment: 50 pages, 5 figures, changed conten

    Field Theory Approach to Quantum Interference in Chaotic Systems

    Full text link
    We consider the spectral correlations of clean globally hyperbolic (chaotic) quantum systems. Field theoretical methods are applied to compute quantum corrections to the leading (`diagonal') contribution to the spectral form factor. Far-reaching structural parallels, as well as a number of differences, to recent semiclassical approaches to the problem are discussed.Comment: 18 pages, 4 figures, revised version, accepted for publication in J. Phys A (Math. Gen.

    Semi-classical spectrum of integrable systems in a magnetic field

    Full text link
    The quantum dynamics of an electron in a uniform magnetic field is studied for geometries corresponding to integrable cases. We obtain the uniform asymptotic approximation of the WKB energies and wavefunctions for the semi-infinite plane and the disc. These analytical solutions are shown to be in excellent agreement with the numerical results obtained from the Schrodinger equations even for the lowest energy states. The classically exact notions of bulk and edge states are followed to their semi-classical limit, when the uniform approximation provides the connection between bulk and edge.Comment: 17 pages, Revtex, 6 figure

    Heat kernel of integrable billiards in a magnetic field

    Full text link
    We present analytical methods to calculate the magnetic response of non-interacting electrons constrained to a domain with boundaries and submitted to a uniform magnetic field. Two different methods of calculation are considered - one involving the large energy asymptotic expansion of the resolvent (Stewartson-Waechter method) is applicable to the case of separable systems, and another based on the small time asymptotic behaviour of the heat kernel (Balian-Bloch method). Both methods are in agreement with each other but differ from the result obtained previously by Robnik. Finally, the Balian-Bloch multiple scattering expansion is studied and the extension of our results to other geometries is discussed.Comment: 13 pages, Revte

    Quantum correlations and distinguishability of quantum states

    Full text link
    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.Comment: Review article, 103 pages, to appear in J. Math. Phys. 55 (special issue: non-equilibrium statistical mechanics, 2014

    Effect of pitchfork bifurcations on the spectral statistics of Hamiltonian systems

    Get PDF
    We present a quantitative semiclassical treatment of the effects of bifurcations on the spectral rigidity and the spectral form factor of a Hamiltonian quantum system defined by two coupled quartic oscillators, which on the classical level exhibits mixed phase space dynamics. We show that the signature of a pitchfork bifurcation is two-fold: Beside the known effect of an enhanced periodic orbit contribution due to its peculiar \hbar-dependence at the bifurcation, we demonstrate that the orbit pair born {\em at} the bifurcation gives rise to distinct deviations from universality slightly {\em above} the bifurcation. This requires a semiclassical treatment beyond the so-called diagonal approximation. Our semiclassical predictions for both the coarse-grained density of states and the spectral rigidity, are in excellent agreement with corresponding quantum-mechanical results.Comment: LaTex, 25 pp., 14 Figures (26 *.eps files); final version 3, to be published in Journal of Physics

    Describing semigroups with defining relations of the form xy=yz xy and yx=zy and connections with knot theory

    Get PDF
    We introduce a knot semigroup as a cancellative semigroup whose defining relations are produced from crossings on a knot diagram in a way similar to the Wirtinger presentation of the knot group; to be more precise, a knot semigroup as we define it is closely related to such tools of knot theory as the twofold branched cyclic cover space of a knot and the involutory quandle of a knot. We describe knot semigroups of several standard classes of knot diagrams, including torus knots and torus links T(2, n) and twist knots. The description includes a solution of the word problem. To produce this description, we introduce alternating sum semigroups as certain naturally defined factor semigroups of free semigroups over cyclic groups. We formulate several conjectures for future research

    Periodic-orbit theory of universal level correlations in quantum chaos

    Full text link
    Using Gutzwiller's semiclassical periodic-orbit theory we demonstrate universal behaviour of the two-point correlator of the density of levels for quantum systems whose classical limit is fully chaotic. We go beyond previous work in establishing the full correlator such that its Fourier transform, the spectral form factor, is determined for all times, below and above the Heisenberg time. We cover dynamics with and without time reversal invariance (from the orthogonal and unitary symmetry classes). A key step in our reasoning is to sum the periodic-orbit expansion in terms of a matrix integral, like the one known from the sigma model of random-matrix theory.Comment: 44 pages, 11 figures, changed title; final version published in New J. Phys. + additional appendices B-F not included in the journal versio

    The sudden change phenomenon of quantum discord

    Full text link
    Even if the parameters determining a system's state are varied smoothly, the behavior of quantum correlations alike to quantum discord, and of its classical counterparts, can be very peculiar, with the appearance of non-analyticities in its rate of change. Here we review this sudden change phenomenon (SCP) discussing some important points related to it: Its uncovering, interpretations, and experimental verifications, its use in the context of the emergence of the pointer basis in a quantum measurement process, its appearance and universality under Markovian and non-Markovian dynamics, its theoretical and experimental investigation in some other physical scenarios, and the related phenomenon of double sudden change of trace distance discord. Several open questions are identified, and we envisage that in answering them we will gain significant further insight about the relation between the SCP and the symmetry-geometric aspects of the quantum state space.Comment: Lectures on General Quantum Correlations and their Applications, F. F. Fanchini, D. O. Soares Pinto, and G. Adesso (Eds.), Springer (2017), pp 309-33
    corecore