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Semiclassical form factor for spectral and matrix element fluctuations of
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We present a semiclassical calculation of the generalized form factor Kab(τ ) which characterizes

the fluctuations of matrix elements of the operators â and b̂ in the eigenbasis of the Hamiltonian of a
chaotic system. Our approach is based on some recently developed techniques for the spectral form
factor of systems with hyperbolic and ergodic underlying classical dynamics and f = 2 degrees of
freedom, that allow us to go beyond the diagonal approximation. First we extend these techniques
to systems with f > 2. Then we use these results to calculate Kab(τ ). We show that the dependence
on the rescaled time τ (time in units of the Heisenberg time) is universal for both the spectral and
the generalized form factor. Furthermore, we derive a relation between Kab(τ ) and the classical

time–correlation function of the Weyl symbols of â and b̂.

PACS numbers: 05.45.Mt, 03.65.Sq

I. INTRODUCTION

A. Overview

In a number of recent works the quantum spectral statistics of closed chaotic systems was investigated in the
semiclassical limit. According to a conjecture by Bohigas, Giannoni and Schmit [1] (BGS), the fluctuations of the
energy levels are system–independent and coincide with the predictions of random–matrix theory (RMT) if the system
has a chaotic underlying classical dynamics. Numerical and experimental investigations carried out on a great variety
of systems support the BGS conjecture [2, 3].

In the semiclassical limit, Gutzwiller’s trace formula [4] provides a suitable starting point for the calculation of
spectral correlation functions. It relates the quantum mechanical density of states to a sum over classical periodic
orbits which are characterized by an amplitude and a phase that is obtained from the action of the orbit. A prominent
example of a quantum correlation function is the two–point energy–energy correlation function and its Fourier trans-
form, the spectral form factor K(τ). In this case a semiclassical analysis faces the problem of evaluating a double sum
over periodic orbits which requires an appropriate quantitative treatment of classical action correlations. Averaging
the form factor of a given system over an energy window that is large compared to the mean level spacing implies
that only pairs of orbits with a small action difference of the order of h̄ yield significant contributions. The leading
contribution given by the terms with vanishing action difference is obtained within the diagonal approximation [5].
This approximation accounts for all orbit pairs where an orbit is associated to itself or to its time–reversed partner if
time–reversal symmetry is present.

Only recently a method for a systematic inclusion of certain orbit pairs with small but nonzero action differences was
developed for systems with time–reversal symmetry [6, 7]. This approach, originally formulated in the configuration
space, was first applied to the next-to-leading order correction of the spectral form factor of a uniformly hyperbolic
system showing agreement with the RMT predictions. In subsequent works, extensions to a phase–space formulation
applicable to nonuniformly hyperbolic systems [8, 9] and to higher–order corrections [11] were proposed. However,
all these previous considerations were restricted to systems with f = 2 degrees of freedom, e.g., two–dimensional
billiards, while the more general RMT conjecture is independent of f . In this work, we present a theory which applies
to hyperbolic and ergodic Hamiltonian systems with an arbitrary number f of degrees of freedom (f ≥ 2). These
systems are characterized by a set of system–specific time scales, namely the (f − 1) positive Lyapunov exponents.
However, we will prove that going beyond the diagonal approximation the final result for the spectral form factor is
independent of f and coincides in a universal way with the RMT predictions.
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From an experimental point of view it is desirable to furthermore develop a theory that describes not only statistical
properties of the energy spectrum but also of quantum mechanical matrix elements, as entering, for example, in cross

sections. The fluctuations of the diagonal matrix elements of the operators â and b̂ in the eigenbasis of the Hamiltonian
can be described by a generalized form factor [12] Kab(τ).

Similarly to the spectral form factor, one expects that Kab(τ) also shows universal features as h̄ → 0 and depends
only on averaged classical quantities, like the averages over the constant–energy surface and the time correlation

function of the Weyl symbols of â and b̂. Analytical results exclusively based on the diagonal approximation have to
some extent confirmed this statement [12, 13, 14, 15]. In this work, we generalize these results beyond the diagonal
approximation.

In the following two subsections we briefly recall the semiclassical theory for the form factor based on Gutzwiller’s
trace formula. In section II, we discuss the diagonal approximation and the origin of the off–diagonal corrections
in the special case of the spectral form factor. We then show how the results for two–dimensional systems can be
extended to higher–dimensional ones, leading once more to universality and agreement with RMT predictions in the
semiclassical limit. The matrix–element fluctuations described by the generalized form factor Kab(T ) are then studied
in Section III. The leading–order (diagonal approximation) and next-to-leading-order terms are determined.

B. Generalized form factor: definitions and main results

We introduce the weighted density of states

da(E) ≡ tr
(

â δ(E − Ĥ)
)

=
∑

n

〈n|â|n〉 δ(E − En) (1)

for a quantum observable â. This is in generalization of the spectral density of states where â is given by the identity
operator, i.e., â = 1̂. In Eq. (1), |n〉 are the eigenstates and En the corresponding eigenenergies of the Hamiltonian

Ĥ of the system. The two–point correlation function

Rab(ǫ) ≡
1

〈d(E)〉2∆E

(

〈

da

(

E − ǫ

2

)

db

(

E +
ǫ

2

)〉

∆E
−
〈

da(E)

〉

∆E

〈

db(E)

〉

∆E

)

(2)

describes correlations between the diagonal matrix elements of â and b̂ in the eigenbasis {|n〉}. In Eq. (2), 〈d(E)〉∆E
is the mean density of states, given by 〈d(E)〉∆E = Ω/(2πh̄)f , where f is the number of degrees of freedom of the
system and Ω =

∫

dx δ(E − H(x)) the volume of the constant–energy surface in phase space. The brackets 〈. . . 〉∆E

denote a smooth (e.g., Gaussian) energy average over an energy window ∆E much larger than the mean level spacing
but classically small, i.e., 〈d(E)〉−1

∆E ≪ ∆E ≪ E. The mean density of states determines the Heisenberg time,

TH ≡ 2πh̄ 〈d(E)〉∆E . (3)

As shown in Ref. [16], a second average is required to obtain a self–averaging quantity for the Fourier transform of the
correlation function Rab(ǫ). We thus introduce the form factor as a time average of the Fourier transform of Rab(ǫ)
over a time window ∆T , with ∆T ≪ TH (for instance, ∆T = 2πh̄/∆E). Denoting by h(ǫ) the Fourier transform of
the weight function in the time average, we define

Kab(T ) ≡ 〈d(E)〉∆E

∞
∫

−∞

dǫ e−iǫT/h̄ h(ǫ)Rab(ǫ) . (4)

This generalized form factor which has been introduced in Ref. [12] will be the central quantity of this pa-
per. For definiteness, we consider a uniform average over a time window [T − ∆T/2, T + ∆T/2] implying
h(ǫ) = (ǫ∆T/2h̄)−1 sin(ǫ∆T/2h̄).

Setting â = b̂ = 1̂ in Eqs. (2) and (4), one recovers the well–known spectral form factor K(T ) ≡ K11(T ). The
correlation function R(ǫ) and its Fourier transform (4) have been calculated based on random–matrix assumptions.
For systems with time–reversal symmetry, the relevant random–matrix ensemble is the Gaussian orthogonal ensemble
(GOE) and yields the spectral form factor

K (τ) = 2τ − τ ln(1 + 2τ) , 0 < τ < 1

= 2τ − 2τ2 + O(τ3) , (5)
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independent of the dimensionality f of the system. Here, K(τ) is expressed in terms of the rescaled time τ = T/TH.
As follows from Snirelman’s theorem [17], the corresponding generalized form factor reads, to leading order in h̄,

Kab(τ) ≃ a(x) b(x)K(τ) (6)

(see section III below). Here, the average a(x) of the Weyl symbol a(x) of the quantum observable â is taken with
respect to the Liouville measure,

a(x) ≡ 1

Ω

∫

dx δ(E − H(x)) a(x) , (7)

see also (10). The phase–space coordinates are denoted by x = (q,p). In many interesting situations a(x) = b(x) = 0

which can always be obtained by shifting a(x) → a(x)− a(x). This implies, according to Eq. (6), a vanishing Kab(τ)
for h̄ → 0. In this case, our semiclassical methods will enable us to go beyond the result (6). We will show that the

correction terms to Eq. (6) are of order 1/TH ∼ h̄f−1 and given by

Kab (τ) ≈ 1

τTH

[

2τ − 2τ2 + O(τ3)
]

∞
∫

0

dt CS
ab(t) . (8)

Here the classical time–correlation function CS
ab(t) is defined as

CS
ab(t) ≡ a(x)bS(xt) with bS(x) =

b(x) + b(T x)

2
, (9)

where a(x) = b(x) = 0 is implicitly used, T : (q,p) 7→ (q,−p) is the time–reversal map, and xt is the solution of
the classical equations of motion with initial condition x0 = x. The symmetrized form bS(x) of b(x) enters as the
dynamics is assumed to be invariant with respect to time reversal.

C. Semiclassical limit

In the semiclassical approach, the Weyl symbol of the operator â,

a(q,p) ≡
∫

dq′ eip·q′/h̄
〈

q − q′

2

∣

∣

∣ â
∣

∣

∣q +
q′

2

〉

(10)

plays an important role (see, e.g., Ref. [18]). It is a function of the phase–space coordinates x = (q,p) and tends in
the limit h̄ → 0 to the corresponding classical observable. In the following we assume that a(x) is a smooth function
of x. The semiclassical evaluation of Eq. (1) for classically chaotic quantum systems yields the generalized Gutzwiller
trace formula [19, 20]

da(E) = 〈da(E)〉∆E + dosc
a (E) , (11)

with

〈da(E)〉∆E =
Ω

(2πh̄)f
a(x) (12)

and

dosc
a (E) =

1

πh̄
Re

{

∑

γ

Aγ exp

(

i
Sγ

h̄

)

}

. (13)

The mean weighted density of states, 〈da(E)〉∆E, depends on the dimensionality f of the system and is determined
by the average (7) of a(x) over the constant–energy surface. The oscillatory contribution, Eq. (13), is given by a sum
over classical periodic orbits labeled by γ. The weights Aγ are related to the amplitudes [4]

wγ =
(Tγ/rγ) exp(−iπµγ/2)
√

| det(Mγ − 1)|
(14)
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via the relation Aγ = wγAγ , where Tγ is the period of the orbit γ, rγ its repetition number, µγ its Maslov index, Mγ

its stability matrix, and

Aγ = A(xγ
0 , Tγ) ≡ 1

Tγ

Tγ
∫

0

dt a(xγ
t ) . (15)

Here, x
γ
t is the phase–space point on the periodic orbit γ obtained by solving the classical equations of motion with

the initial condition x0, so that x
γ
t+Tγ

= x
γ
t . The applicability of the semiclassical expression (13) to chaotic systems

with more than two degrees of freedom has been extensively studied in Ref. [21].
Only the oscillating parts of da(E) and db(E) contribute to the correlation function (2). Substituting Eq. (13) into

Eq. (4), one obtains

Kab(T ) =
1

TH

〈

∑

γ,γ̄

AγB∗
γ̄ exp

(

i
Sγ − Sγ̄

h̄

)

δ∆T

(

T − Tγ + Tγ̄

2

)

〉

∆E

(16)

by generalizing the corresponding steps of the semiclassical derivation of the spectral form factor [3]. In Eq. (16), the
delta function with a finite width, δ∆T (T ′), originates from our choice of time averaging in Eq. (4). It is equal to
∆T−1 if −∆T/2 ≤ T ′ ≤ ∆T/2 and zero otherwise. The semiclassical formula (16) of Kab(T ) is the starting point of a
further semiclassical evaluation. It contains a double sum over terms which strongly fluctuate with energy and poses
the challenge to approximately compute its energy average.

An earlier approach to this problem is presented in Ref. [22] where the correlation function (2) is considered directly
instead of the form factor. It was shown that the off–diagonal contributions can be related to the diagonal terms
yielding the leading order oscillatory term of the corresponding RMT result of R(ǫ) for large ǫ. Furthermore, it was
pointed out that in the case of a weighted density of states these contributions vanish to leading semiclassical order
if the microcanonical average of the corresponding observable is zero. In this work we proceed in a different way
and restrict our considerations to the form factor in the limit of small τ = T/TH ≪ 1, see Subsection III A for our
corresponding results concerning the weighted density of states.

In the following section we first discuss the case of the spectral form factor and then generalize our approach to
include matrix element fluctuations in Section III.

II. SPECTRAL FORM FACTOR FOR f-DIMENSIONAL SYSTEMS

A. Semiclassical evaluation within the diagonal approximation

A semiclassical expression for the spectral form factor K(τ) = K11(τ) is given by Eq. (16) with Aγ = wγ , Bγ̄ = wγ̄

and the rescaled time τ = T/TH . To leading order in h̄ and τ , the double sum over periodic orbits can be evaluated
by means of the so–called diagonal approximation [5]. It is guided by the fact that the contributions from pairs (γ, γ)
of orbits with action differences larger than h̄ strongly fluctuate in energy and are therefore suppressed upon energy
averaging. Hence the main contribution stems from the pairs of orbits with equal actions Sγ = Sγ̄ . If the system
has no other than time–reversal symmetry then these pairs are obtained (up to accidental action degeneracies) by
pairing each orbit γ with itself or with its time–reversed version γi. To calculate the corresponding contribution to
the semiclassical form factor (16), one has to perform a weighted periodic–orbit average of the type

〈. . . 〉po,T ≡ 1

T

∑

γ

. . . |wγ |2δ∆T (T − Tγ). (17)

This is achieved by means of the following sum rule for periodic orbits in chaotic systems [23]:

〈

1

Tγ

Tγ
∫

0

dt f(xγ
t )

〉

po,T

≃ 1

T

T
∫

0

dt f(xt) ≃ f(x) (18)

with T → ∞. On the left–hand side the arbitrary continuous function f(x) is integrated along the periodic orbits γ
with periods Tγ lying in the interval [T − ∆T/2, T + ∆T/2]. The integral on the right–hand side of Eq. (18) is taken
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FIG. 1: Representation of a periodic orbit γ (solid line) in phase space with a close encounter together with its time–reverse
version γi (dashed line) and its partner orbit γp (dotted line). The orbit γ is characterized by two stretches which are almost
time reverse of one another. One of these stretches is situated between the two Poincaré surface of sections (PSS) perpendicular
to the orbit shown by the grey squares. The time–reverse map T is the reflection with respect to the plane p = 0. The picture
should be thought of as a projection of the whole 2f -dimensional phase space on a subspace formed by one momentum and
two position coordinates.

along a nonperiodic “ergodic” trajectory which uniformly and densely fills the constant–energy surface. For ergodic
systems this time average is equal to the phase–space average f(x) in the large T limit. In the special case f(x) = 1,
Eq. (18) is known as the Hannay-Ozorio de Almeida sum rule [24].

For a fixed rescaled time τ = T/TH , the periods Tγ of the orbits entering Eq. (16) diverge as TH = O(h̄1−f ) for
h̄ → 0. This justifies the use of the sum rule (18) for the evaluation of the form factor. Since wγ = wγi , see Eq. (14),

the contribution of the pairs (γ, γ) and (γ, γi) to the spectral form factor, neglecting all other orbit pairs, is given
by [5]

K(1) (τ) = 2τ
〈

〈1〉po,T

〉

∆E
≃ 2τ . (19)

The factor of two is due to the time–reversal symmetry. It is worthwhile to note that K(1)(τ) agrees with the leading
term of the RMT result (5) for the GOE case; correspondingly the GUE form factor K(1)(τ) = τ is reproduced for
systems without time–reversal symmetry. Hence the diagonal approximation explains the universality of the form
factor for τ ≪ 1 in the semiclassical limit.

B. Origin of the off–diagonal corrections

In order to go beyond the diagonal approximation and to explain the agreement of the semiclassical spectral form
factor with the RMT result (5) at higher orders in τ , one has to evaluate further terms in the double sum over
periodic orbits (16). Only pairs of periodic orbits which involve a small action difference of the order of h̄ interfere
constructively and are not suppressed by the energy average. In a series of papers [6, 7, 8, 9, 10] starting from the
work by Sieber and Richter [6, 7], specific periodic–orbit correlations in systems with time–reversal symmetry have
been investigated in order to compute the leading off–diagonal corrections to the semiclassical spectral form factor.
It has been shown that, for hyperbolic dynamics invariant under time reversal, there exists a continuous family of
pairs (γ, γp) of periodic orbits with arbitrarily small action differences. These orbit pairs give rise to a contribution
of K(2)(τ) = −2τ2 to the spectral form factor. Hence it coincides with the next-to-leading-order term in the RMT
result (5). The idea of the approach runs as follows. A periodic orbit γ is represented by a closed curve in phase
space. Let us assume that this curve has two stretches which are almost the time–reverse of one another (i.e., they
are almost identical after applying the time reverse map T : (q,p) 7→ (q,−p) on one of them). In the sequel, we refer
to such two almost time–reverse stretches of the orbit γ as a “close encounter” or, more shortly, an “encounter”. The
two pieces of γ separated by the encounter are called the “left part” and the “right part”. One can associate to γ a
partner orbit γp by inverting time on, say, the left part, leaving the right part almost unchanged. Hence γp follows
closely the time reverse γi of γ on its left part while it follows closely γ on its right part, as shown in Fig. 1. Such
a partner orbit γp has almost the same action as γ. More precisely, the more symmetric the two orbit stretches of
γ are with respect to time reversal the closer is γp to either γ or γi and the smaller the action difference Sγp − Sγ .
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FIG. 2: Configuration space representation of a periodic orbit γ with a close encounter (solid line) together with its partner
orbits γp (dotted line) for a system with two degrees of freedom.

Because the periods of the orbits involved in the sum (16) are on the scale of the Heisenberg time TH , Eq. (3), one
expects a large number of encounters on a given orbit γ in this sum. Thus a large number of partner orbits γp with
small action differences Sγp − Sγ can be associated to any periodic orbit γ. Both, γ and its associated partner orbit
γp share the property to have two almost time–reverse stretches, which are approximately the same for both orbits.
The partner orbit of γp coincides with the original orbit γ.

All previous works [6, 7, 8, 9, 10, 11] dealing with the contribution of the pairs (γ, γp) of partner orbits to the
semiclassical form factor have been restricted to systems with two degrees of freedom. Then either γ or γp has one
(or possibly several) self–intersection(s) in configuration space, which corresponds to the encounter in phase space.
The right and left parts of the orbit correspond to the two loops formed by this intersection in configuration space,
see Fig. 2. The right loop is traversed in the same direction while the left loop is traversed with different orientation,
hence requiring time–reversal symmetry. In order that the two stretches of the orbit near the self–intersection be
almost symmetric with respect to time reversal, the two corresponding velocities must be almost antiparallel. The
intersection is then characterized by a small crossing angle ε. The orbits γ and γp are distinguished by the fact that
one has one more self–intersection than the other [10]. This is in contrast to the phase–space approach, in which the
two partner orbits are treated on equal footing. In systems with more than two degrees of freedom, the phase–space
approach [8, 9] is more appropriate, because for f > 2 the relevant orbits generally do not have self–intersections in
the f -dimensional configuration space.

In the following subsections, we will study the spectral form factor of quantum mechanical systems whose classical
counterparts are Hamiltonian systems with f ≥ 2 degrees of freedom. Furthermore, we consider systems with time–
reversal symmetry, since only in this case the orbit pairs (γ, γp) exist. We show that, if the underlying classical
dynamics is ergodic and hyperbolic, these orbit pairs yield the contribution K(2)(τ) = −2τ2 to the semiclassical
spectral form factor, independent of the number of degrees of freedom. Remarkably, the different time scales given by
the set of Lyapunov exponents {λi} do not show up in the final result which coincides with the universal second–order
term of the random–matrix theory prediction (5). Our technique strongly relies on the equivalence between the two
approaches previously developed in Ref. [9] and Refs. [8, 25] to count the number of partner orbits. Therefore we
present a proof of this equivalence which clarifies the underlying dynamical mechanisms related to the partner orbit
statistics. Our semiclassical evaluation of the spectral form factor K(2)(τ) will serve as a basis for the calculation of

the generalized form factor K
(2)
ab (τ) in Section III.

C. Hyperbolic Hamiltonian systems

Before evaluating the spectral form factor we introduce the notations by very briefly summarizing the necessary
concepts for dynamical systems [26]. The classical dynamics of the system is assumed to be ergodic and hyperbolic. It
maps any phase–space point x0 = x onto the point xt after time t. Hyperbolicity means that all Lyapunov exponents
are nonzero except the one corresponding to the direction along the flow [26]. For a given classical trajectory, the
dynamics in its vicinity can be linearized using the stability matrix M(t,x). The vector δ~y0(x) ≡ (δq⊥

0 , δp⊥
0 ) describing

a small displacement from x perpendicular to the trajectory[36] within the constant–energy surface is given at a later
time t by

δ~yt(x) ≈ M(t,x) δ~y0(x). (20)

This linear approximation is valid as long as δ~yt(x) remains sufficiently small. The set of all possible vectors δ~y0(x)
defines a (2f − 2)-dimensional Poincaré surface of section (PSS) at point x perpendicular to the trajectory in phase
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space. The matrix M(t,x) is a linear map from the PSS at x to the PSS at xt. This map is symplectic, i.e., it satisfies
MT Σ M = Σ, with

Σ =

(

0 1

−1 0

)

, (21)

where 0 and 1 refer to the (f − 1)× (f − 1) null and identity matrices. Therefore the symplectic product is conserved
by the dynamics, i.e., δ~y T

t Σ δ~y ′
t ≈ δ~y T

0 Σ δ~y ′
0 for any two small displacements δ~y0 and δ~y ′

0, provided δ~yt and δ~y ′
t

remain sufficiently small.
The linear stable and unstable directions in the PSS at x are denoted by ~e s

i (x) and ~eu
i (x). They define vector fields

which can be found by means of a homological decomposition [26] of the stability matrix M(t,x). A stretching factor
Λi(t,x) is associated to each direction. It is defined by

M(t,x)~eu,s
i (x) = Λi(t,x)±1 ~eu,s

i (xt) , (22)

where the signs + and − correspond to the superscripts u and s, respectively. It is worth noting that Eq. (22) is
not an eigenvalue equation for the matrix M(t,x), since the vectors ~e s,u are evaluated at different positions in phase
space [37]. In the long–time limit, the stretching factor is related to the Lyapunov exponent λi(x) at point x via the
relation ln |Λi(t,x)| ≈ λi(x)t. On shorter time scales one has to solve the equations of motion

dΛi(t,x)

dt
= χi(xt) Λi(t,x) , (23)

where χi(x) is the local growth rate. In the following, we will assume that the local growth rates are continuously
varying functions in phase space. In general, χi(x) can take negative values in some region of phase space [26].

However, by ergodicity, its average χi(x) over the constant–energy surface is positive since it is equal to the ith
positive Lyapunov exponent λi at almost all points x (i.e., on a set of points x of measure one). The Lyapunov
exponents of periodic orbits (being of measure zero in phase space) are in general different from the λi’s. They are
given by

λγ
i ≡ λi(x

γ
0 ) =

ln |Λi(Tγ ,xγ
0 )|

Tγ
=

1

Tγ

∫ Tγ

0

dt χi(x
γ
t ) . (24)

In hyperbolic systems, the set of vectors {~e s
i (x), ~eu

i (x)} spans the whole PSS at x. Hence each displacement vector
δ~y(x) can be decomposed into its stable and unstable components,

δ~y(x) ≡ δ~ys(x) + δ~yu(x) =

f−1
∑

i=1

(

si(x)~e s
i (x) + ui(x)~eu

i (x)
)

. (25)

Therefore δ~y(x) is determined by the set of stable coordinates {si} and unstable coordinates {ui}. Provided that all
these coordinates ui, si are small enough, the linear approximation (20) can be applied for sufficiently long times t,
say, up to some time ∆tu ≫ λ−1

i (x). By (22) and (25), the ith unstable component at time t is then equal to its
value ui at time t = 0 multiplied by Λi(t,x). This leads to an exponential growth of this unstable component as
|ui| exp[λi(x)t] during the time λ−1

i (x) ≪ t ≤ ∆tu. Similar arguments hold for the stable components si when going
backwards in time. This implies an exponential decrease of si so that the product ui si remains constant. For times
t ≤ ∆tu, it follows from Eq. (23) that

dui

dt
= χi(xt)ui (26)

and similarly for si with χi replaced by −χi.
The dynamics uniquely specifies the directions of the ~e s,u

i (x). Due to the symplectic nature of the stability matrix
M(t,x), they have to fulfill the “orthogonality relations”

~eu
i (x)T Σ~eu

j (x) = ~e s
i (x)T Σ~e s

j (x)

= ~eu
i (x)T Σ~e s

j (x) = 0 (27a)

for i 6= j. However, the norms of ~e s,u
i (x) can be chosen arbitrarily. In the sequel, we choose these norms in a way that

their symplectic product gives a classical action Scl of the system under consideration, e.g., the action corresponding
to the shortest periodic orbit,

~eu
i (x)T Σ~e s

j (x) = Sclδij . (27b)
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FIG. 3: Schematic drawing of the encounter region in phase space. The Poincaré surface of section (PSS) is a (2f − 2)-
dimensional surface defined at x

γ
t in the 2f -dimensional phase space by the perpendicular coordinates (δq⊥, δp⊥). The original

orbit γ is represented by the solid line. Also drawn are two segments of the time–reversed orbit γi (dashed lines) which yield
the two closest intersection points. The corresponding “loop times” tl are denoted by tl1 and tl2. The displacement vector
δ~y = δ~y(xγ

t , tl) points from the original orbit to the intersection points.

The symmetry of the dynamics with respect to the time–reversal operation T implies M(t, T xt) = T M(t,x)−1 T ,
where, in the right–hand side, the symbol T refers to the restriction of the time–reversal map to the PSS at x or at
T xt. It follows that the vectors ~e s,u

i (x) can be chosen in such a way that, in addition to Eq. (27), they satisfy

~eu
i (T x) = T ~e s

i (x) , ~e s
i (T x) = T ~eu

i (x) (28a)

and

Λi(t, T xt) = Λi(t,x) . (28b)

The relations (27) imply that the Jacobian matrix J(x) = ∂(δq⊥, δp⊥)/∂(si, ui) of the transformation from the
position/momentum coordinates to the stable/unstable coordinates in the PSS at x is symplectic up to a factor −Scl,
i.e., J(x)T ΣJ(x) = −SclΣ. Hence the Jacobian determinant of this transformation equals (−Scl)

f−1.

D. Encounter region

As it has been described in Subsection II B the pairs of periodic orbits (γ, γp) which interfere constructively in the
double sum (16) are related to close encounters of γ. Each such encounter involves two orbit stretches of γ which are
approximately time reversed with respect to each other. The purpose of this subsection is to give a more precise and
quantitative definition of the notion of an encounter in the 2f ≥ 4 dimensional phase space.

Let us assume that the periodic orbit γ comes close to its time–reversed version γi at a point x
γ
t in phase space so

that x
γ
t ≃ T x

γ
t+tl . In the following, we choose the time tl such that T x

γ
t+tl lies in the PSS perpendicular to the orbit

at x
γ
t . Thus the small displacement vector between γ and γi lies in this PSS and can be decomposed in terms of the

stable and unstable coordinates (see Subsection II C),

δ~y(xγ
t , tl) = T x

γ
t+tl

− x
γ
t (29)

=

f−1
∑

i=1

(

si(x
γ
t , tl)~e

s
i (xγ

t ) + ui(x
γ
t , tl)~e

u
i (xγ

t )
)

.

If one moves from x
γ
t to x

γ
t+∆t along the orbit γ, this displacement vector evolves according to the equations of motion

and becomes δ~y∆t(x
γ
t , tl) = δ~y(xγ

t+∆t, tl − 2∆t). The displacement δ~y∆t(x
γ
t , tl) remains small due to the deterministic

nature of the dynamics if the time ∆t is sufficiently short. In other words, if the two orbits γ and γi are close to each
other at some point in phase space, it takes them a certain finite time until they have significantly deviated from each
other.

We define the “encounter region” as the set of all points x
γ
t+∆t such that each stable and unstable component of

the displacement vector δ~y∆t(x
γ
t , tl) is smaller than a certain threshold c <∼ 1. The value of c is chosen in such a way

that δ~y∆t(x
γ
t , tl) is given by the linearized equations of motion δ~y∆t(x

γ
t , tl) ≈ M(∆t,xγ

t )δ~y(xγ
t , tl) as long as x

γ
t+∆t

stays within the encounter region, while the linear approximation breaks down outside of it. Therefore c is a purely
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classical quantity which describes the breakdown of the linear approximation applied to δ~y∆t(x
γ
t , tl). As it will turn

out, the precise value of c is not essential for the calculation of the form factor in the semiclassical limit. This implies
that a phase–space dependent c(x) does not alter the final result for the form factor. Strictly speaking, c also depends
on the size of the encounter region, since the corrections to the linear approximation specified above should increase
with ∆t. However, for smooth dynamics this time dependence turns out to be weak, i.e., logarithmic in |ui|, |si|, and
one can show that it does not affect the result for the form factor [8].

From the definition given above, one concludes that the range of values of ∆t such that x
γ
t+∆t lies within an encounter

region is given by −∆ts ≤ ∆t ≤ ∆tu, where ∆ts,u is defined as follows. Let us denote the ith stable component of
the time–evolved vector δ~y∆t(x

γ
t , tl) as si(∆t;xγ

t , tl) and similarly for the unstable components ui. Then ∆tu is such
that the displacement δ~y∆tu

is just about to leave the hypercube C = {(si, ui) : |si|, |ui| ≤ c} meaning that its largest
unstable component first reaches the value c. A similar definition yields a time ∆ts if going backwards in time, so
that

max
i=1,...,(f−1)

{|si(−∆ts;x
γ
t , tl)|} = c and

max
i=1,...,(f−1)

{|ui(∆tu;xγ
t , tl)|} = c . (30)

These implicit equations determine the times ∆ts = ∆ts({si};xγ
t ) and ∆tu = ∆tu({ui};xγ

t ) as functions of the
components {si, ui} of the vector δ~y(xγ

t , tl) defined in (29) and of the point x
γ
t in phase space. The time duration of

the encounter region,

tenc({si, ui};xγ
t ) = ∆tu({si};xγ

t ) + ∆ts({ui};xγ
t ) , (31)

thus depends on x
γ
t and on all the components {si, ui}. This time tenc is clearly invariant within a given encounter

region.
The breakdown times ∆ts and ∆tu for the linearization can be estimated in the limit |si|, |ui| ≪ 1 by using

Eq. (30) and the exponential growth of the unstable and stable components in the forward and backward time
directions, respectively. With an error much smaller than ∆tu,s themselves, they diverge like ∆ts ≈ λ−1

j ln |s−1
j | and

∆tu ≈ λ−1
k ln |u−1

k | where j and k are the components for which the maximal values are first reached. For f > 2
degrees of freedom the presence of the maximum in Eq. (30) thus makes the functional dependence of ∆tu,s and tenc

on {si, ui} rather complicated, in contrast to systems with two degrees of freedom.

E. Partner orbit

Let us consider an orbit γ having an encounter at the phase–space location x
γ
t after time tl as described in the

previous subsection. For now we assume that the components {si, ui} of the vector δ~y = δ~y(xγ
t , tl) are small, i.e.,

|si|, |ui| ≪ 1. As it will turn out in due course this is the only relevant case for the form factor. We show, by analyzing
the linearized equations of motion (20) around γ or γi, that there exists another periodic orbit γp which follows closely
γ between t and t + tl (part R) and follows closely γi during the rest of the time (part L), i.e.,

x
γp

t′ ≃
{

x
γ
t′ for t ≤ t′ < t + tl (part R)

T x
γ
2t+tl−t′ for t + tl ≤ t′ < Tγ + t (part L).

(32)

Let us denote by δ~xR,i the phase–space displacement between γ and γp at the beginning of part R (time t), see
Fig. 4. To simplify the notations, we do not write explicitly the dependence of the displacement vectors on x

γ
t and tl.

At the end of part R, i.e., at time t + tl, the displacement δ~xR,i has changed to δ~xR,e. At the beginning and the end
of part L, the displacement vectors between the time–reversed orbit γi and the partner orbit γp are denoted by δ~xLi,i

and δ~xLi,e, respectively. Here, Li indicates that one has to invert time on L. The vectors δ~x are given explicitly by

δ~xR,i = x
γp

t − x
γ
t , δ~xLi,i = x

γp

t+tl
− T x

γ
t , (33)

δ~xR,e = x
γp

t+tl
− x

γ
t+tl

and δ~xLi,e = x
γp

t − T x
γ
t+tl

.

The vectors δ~xR,i and δ~xLi,e lie in the PSS defined at x
γ
t (see Fig. 4), while δ~xR,e and δ~xLi,i are in the PSS at x

γ
t+tl

.
Let R = M(tl,x

γ
t ) and L = M(Tγ − tl,x

γ
t+tl) be the stability matrices of the parts R and L of γ, respectively. The

stability matrix of Li is given by Li = T L−1 T . Since the partner orbit γp is assumed to follow closely γ on part R
and γi on part L, one can use the linear approximation to evaluate δ~xR,e and δ~xLi,e as functions of δ~xR,i and δ~xLi,i,
respectively, i.e.,

δ~xR,e = R δ~xR,i , δ~xLi,e = Li δ~xLi,i. (34a)
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δxR,i

δxL ,ei

x t
pγ

δxR,e

δxL ,ii

xγ
t

T

T

yδ

T xγ
t+tl

pδ

qδ

e eus

T xγp
t+tl

FIG. 4: PSS at xt right after part L and before R. The displacement vector δ~y points from the orbit γ to its time–reversed
version γi. The deviation of the partner orbit γp from the original orbit γ is described by the vector δ~xR,i. Shown is only a
two–dimensional projection of the (2f − 2)-dimensional PSS.

These equations determine the two single parts of the partner orbit γp during R and L. In addition, the relations

δ~xR,i − δ~xLi,e = δ~y , δ~xR,e − δ~xLi,i = −T δ~y (34b)

make sure that the two parts fit together in the encounter region. The set of equations (34) can be rewritten to give

(1 − LiR) δ~xR,i = (1 + LiT ) δ~y and (1 − RLi) δ~xLi,i = (T + R) δ~y . (35)

Assuming that the determinants of (1 − LiR) and (1 − RLi) do not vanish, the system of linear equations (34) has
a unique solution. This solution yields the vectors δ~x in terms of the displacement δ~y. Hence it characterizes the
geometry of the partner orbit γp in terms of deviations from γ and γi.

It is important to note that all points x
γ
t+∆t within the encounter region lead to the same partner orbit γp. This

means that, when writing Eqs. (34) for position x
γ
t+∆t instead of xγ

t , the solution is just the vector δ~xR,i corresponding

to x
γ
t shifted along the orbit during time ∆t and similarly for the other vectors δ~x in Eq. (33). To see this, let us first

remark that the time evolution of δ~y between t and t + ∆t is determined by the stability matrix M = M(∆t,xγ
t ) via

δ~y∆t = Mδ~y. Similar relations hold for the vectors δ~x in Eq. (33). The linearization of the equation of motion is, by
definition, justified within the whole encounter region. The replacement of (xγ

t , tl) by (xγ
t+∆t, tl − 2∆t) thus amounts

to the transformations

δ~y → M δ~y ,
δ~xR,i → M δ~xR,i , δ~xR,e → (M ′)−1 δ~xR,e ,
δ~xLi,i → (M i)−1 δ~xLi,i , δ~xLi,e → (M ′)i δ~xLi,e ,

R → (M ′)−1 R M−1 , L → M L M ′ ,

(36)

with M ′ = M(∆t,xt+tγ

l
−∆t). One can easily check that the set of equations (34) is invariant under these transforma-

tions. This means that the same partner orbit γp is obtained no matter whether x
γ
t or x

γ
t+∆t was chosen within the

encounter region.
Let us first restrict our considerations to the case of long parts R and L. This has to be understood in the sense

that the linear approximation with respect to the evolution of δ~y breaks down at some time between t and t + tl and
similarly, going backward in time, between t and t + tl − Tγ . This means that tl > ∆tu and Tγ − tl > ∆ts. We first
note that these two conditions actually imply the stronger restriction

2∆tu < tl < Tγ − 2∆ts (37)

because the displacements δ~y at the beginning and the end of parts R and L are related to each other via the time–
reversal operator T . Formally this can be seen as follows. The displacement δ~y∆t = δ~y(xγ

t+∆t, tl − 2∆t) satisfies
δ~ytl−∆t = −T δ~y∆t, as is easily checked with Eq. (29). Let us imagine that ∆tu > tl/2 implying that the linear
approximation δ~y∆t = Mδ~y is still valid after x

γ
t+∆t reaches the middle of R. This would imply that |δ~y∆t| continues

to increase exponentially with ∆t after time tl/2 until ∆t reaches ∆tu. Such a statement is in contradiction with the
above–mentioned identity. This shows that ∆tu < tl/2 must hold. A similar argument on part L shows the second
inequality in Eq. (37).
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For a long part R fulfilling (37), the stability matrix R in Eq. (34a) is characterized by exponentially large stretching
factors Λi(x

γ
t , tl). Substituting Eq. (29) into Eq. (35) and using Eq. (28), one thus finds

δ~xR,i = δ~ys =
f−1
∑

i=1

si ~e s
i (xγ

t ) ,

δ~xLi,i = T δ~yu =
f−1
∑

i=1

ui ~e s
i (T x

γ
t ) ,

δ~xR,e = −T δ~ys = −
f−1
∑

i=1

si ~eu
i (T x

γ
t ) ,

δ~xLi,e = −δ~yu = −
f−1
∑

i=1

ui ~eu
i (xγ

t ) .

(38)

This solution is correct up to first order in the small quantities si and ui. Terms smaller than si and ui by a factor
e−tlλ

γ
i or e−(Tγ−tl)λ

γ
i have been also neglected. It means that due to the large lengths of both parts R and L the

vectors δ~xR,i and T δ~xLi,i describing the partner orbit have to lie very close to the stable and the unstable manifolds at

x
γ
t , respectively [27]. Furthermore, the points x

γ
t , x

γp

t , T x
γ
t+tl , and T x

γp

t+tl form a parallelogram in phase space [8, 9],
see Fig. 4.

It is important to notice that there can be a small set of vectors δ~y for which (37) does not hold. This is the
case when either of the parts, say R, is too short [8, 9, 10]. Then the orbit γ and the time–reversed orbit γi stay
close together inside the whole part R so that R is contained within the encounter region. This means that R is
an almost self–retracing part of trajectory in configuration space. This may happen, for example, in billiards with
hard walls if one of the reflections is almost perpendicular to the boundary [10, 28]. If there is no potential or hard
wall, as in the case of the geodesic flow on a Riemann surface with constant negative curvature [6, 7], trajectories
with almost self–retracing parts cannot exist. If R is contained within the encounter region, the linear approximation
δ~y∆t = M(∆t,xγ

t )δ~y can be applied to δ~y = δ~y(xγ
t , tl) at least up to ∆t = tl. This leads to the additional equation

R δ~y = −T δ~y besides Eq. (34). For indeed, following the linearized motion around R, we see that xt and T xt+tl are

interchanged and reverted in time. The solution (35) is then δ~xR,i = δ~y, δ~xR,e = −T δ~y and δ~xLi,i = δ~xLi,e = ~0. This
means that if the time tl violates the condition (37), the solution of Eq. (34) does not yield a new partner orbit but
just the time–reversed orbit γi. Since the orbit pairs (γ, γi) are already accounted for in the diagonal approximation
(19) one must only consider intersection points δ~y(xγ

t ; tl) in the PSS which fulfill (37). In other words, the length tl
of part R must be large enough so that the linear approximation for δ~y∆t breaks down for ∆t < tl and similarly for
part L. Note that ∆ts and ∆tu are large (of order λ−1

j ln |s−1
j | and λ−1

k ln |u−1
k |, respectively, see Subsection II D) if

the components {si, ui} of δ~y are small.

F. Action difference, orbit weights, and Maslov indices

The action difference ∆S between the orbit γ and its partner orbit γp can be found by expanding the action of γp in
part R in terms of γ and in part L in terms of γi. The derivation of ∆S is the same as for systems with f = 2 degrees
of freedom [8, 9]. By using the parallelogram property (38), which is justified since tl > 2∆tu and Tγ − tl > 2∆ts are
large, one finds that ∆S is given in terms of the components {si, ui} of the displacement δ~y(xγ

t , tl) by

∆S ≡ Sγ − Sγp ≈ δ~y T
u Σ δ~ys =

f−1
∑

j=1

Sclsjuj ≡
f−1
∑

j=1

Sj . (39)

Thus ∆S equals the symplectic area of the parallelogram introduced in Subsection II E, see Fig. 4. In the last two
equalities in Eq. (39), we have used Eqs. (27b, 29) and defined Sj ≡ Sclsjuj . The approximation (39) is correct
up to second order in the small |si|, |ui| ≪ 1. It is consistent with the concept of the encounter region as it yields
the same action difference no matter at what position x

γ
t+∆t within the encounter region it is evaluated. This is

due to the conservation of the symplectic product under the dynamics. As only small action differences ∆S ∼ h̄
contribute significantly to the semiclassical form factor (16), the restriction of the considerations presented above to

small components |si|, |ui| ∼
√

h̄/Scl ≪ 1 is well justified.
Besides the two different actions Sγ and Sγp entering the semiclassical form factor (16), one must also compare the

weights wγ and wγp given by Eq. (14). These weights are equal up to small corrections of first order in ui and si as
can be shown in the following way. First of all, for any continuous function f(x) defined in phase space one finds,
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using Eq. (32),

Tγp
∫

0

dt′ f(xγp

t′ ) ≃
t+tl
∫

t

dt′ f(xγ
t′) +

Tγ+t
∫

t+tl

dt′ f(T x
γ
2t+tl−t′) (40)

with small corrections of the order of |si|, |ui| ∼
√

h̄/Scl. That means that the integral over any function f(x) along
the partner orbit γp is approximately given by integrals along parts of γ and γi. The corrections in Eq. (40) are
primarily due to the deviations of the partner orbit γp from the original orbit γ or its time–reversed version γi within
the encounter region. Obviously, Eq. (40) yields Tγ ≃ Tγp for f(x) = 1. Similarly, we can apply Eq. (40) to the

local growth rates f(x) = χi(x), which results into λγ
i ≃ λγp

i in view of Eq. (24) and of the identity χi(T x) = χi(x).
Hence the Lyapunov exponents of the two partner orbits γ and γp have to be almost equal. Finally, we can also
identify f(x) with the local change in the winding number of the stable or unstable manifolds which allows for a
calculation of the Maslov indices [29]. As the winding number of a periodic orbit has to be an integer one finds that,
for smooth dynamics, the Maslov index of the partner orbit has to be exactly equal to the Maslov index of the original
orbit [9, 10], i.e., µγ = µγp . Putting these results together in Eq. (14), one concludes that wγ ≃ wγp . In the spirit
of a stationary phase approximation we therefore keep only the action difference ∆S = Sγ − Sγp in the phase while
neglecting small differences in the pre-exponential factors in Eq. (16).

G. Statistics of partner orbits and the spectral form factor

In the following we show how the orbit pairs (γ, γp) specified above determine the next-to-leading-order result for
the spectral form factor. We assume that the dominant terms beyond the diagonal approximation in Eq. (16) are
due to the systematic action correlations of these orbit pairs. Thus the double sum over periodic orbits (16) can be
replaced by a single sum over the orbits γ followed by a sum over all the partner orbits γp of γ while all other terms
are neglected, i.e.,

K(2)(T ) =
T

TH

〈〈

∑

partners γp

exp

(

i
Sγ − Sγp

h̄

)

〉

po,T

〉

∆E

(41)

where the periodic–orbit average over γ is given by Eq. (17). All partner orbits γp of γ are characterized by the set of
action differences {Sj} defined in Eq. (39). Therefore, setting τ = T/TH , the sum over the partner orbits in Eq. (41)
can be rewritten as an integral over the Sj ’s,

K(2)(τ) = τ

〈 Smax(E)
∫

−Smax(E)

dS1 . . . dSf−1

〈

df−1Nγ({Sj})
dS1 . . .dSf−1

〉

po,τTH

exp



i

f−1
∑

j=1

Sj

h̄





〉

∆E

, (42)

where Smax stands for the maximal action difference occurring among the pairs of partner orbits. The density of
partner orbits γp for a given orbit γ with the set of action differences {Sj} is denoted by df−1Nγ({Sj})/dS1 . . . dSf−1.
This quantity is the crucial ingredient, and we will show how its periodic–orbit average can be calculated in ergodic
systems with an arbitrary number of degrees of freedom. In contrast to the case of two–dimensional systems, the
derivation is significantly more involved because of the higher number of stable and unstable coordinates, Lyapunov
exponents, and the maximum condition (30).

Let us for a moment fix one point x on γ (to simplify the notation, we omit here the superscript γ on x and choose
temporarily the origin of time such that xt = x for t = 0), and consider the PSS P perpendicular to the orbit at x.
The time–reversed orbit γi pierces through P many times. Some of these piercings — each of it associated with a
different time tl — occur at points T xtl close to x, see Figs. 3 and 5. Let ργ({si, ui};x) df−1s df−1u denote the number
of such intersection points, with stable and unstable components of δ~y = T xtl − x lying in intervals (si, si + dsi)
and (ui, ui + dui), respectively. We exclude from ργ all points T xtl violating the condition 2∆tu < tl < Tγ − 2∆ts
since they either do not exist at all or do not give rise to a distinct partner orbit. Thus we have the density of valid
intersection points,

ργ({si, ui};x) =

Tγ−2∆ts
∫

2∆tu

dtl δ
(

[x − T xtl ]‖
)

f−1
∏

i=1

δ ([x − T xtl ]u,i − ui) δ ([x − T xtl ]s,i − si) . (43)
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t1

γ

PSS at xγ PSS at xγ
t2

periodic orbit

FIG. 5: Sketch of the PSS as it is shifted along the periodic orbit γ (solid line). Three pieces of the time–reversed orbit γi

are represented by dashed lines. If the PSS moves with the flow in phase space from x
γ
t1 to x

γ
t2 all intersection points of the

PSS with γi change their positions according to the linearized equations of motion (20). Note that not only γi but also γ itself
could come close to x

γ
t1 at a later time. However, we have not include this in the sketch above.

Here, the first delta function ensures that T xtl lies in P , i.e., that the coordinate [x − T xtl ]‖ of x − T xtl in the
direction parallel to the orbit vanishes. The lower indices s and u indicate the stable and unstable components of the
vectors inside the square brackets.

In order to determine how many partner orbits γp of a given fixed orbit γ exist with a given set of action differences
{Si}, one has to count the number of corresponding encounter regions of γ. As explained in the beginning of this
section each of these encounter regions can be associated to a displacement vector δ~y or to its corresponding time–
evolved δ~y∆t, −∆ts ≤ ∆t ≤ ∆tu. Therefore we consider the dynamics within the PSS Pt at x

γ
t . It can be parametrized

by means of the stable and unstable coordinates of the different vectors δ~y(xγ
t , tl) associated to different times tl. As

the PSS is shifted following the phase–space flow along the orbit γ, the stable and unstable coordinates of each such
vector change leaving only the products Sj = Scl sjuj invariant. The vector δ~y∆t = δ~y∆t(xt, tl) ∈ Pt+∆t corresponding
to a fixed tl thus moves, as Pt+∆t is shifted by increasing ∆t, on a hyperbola as long as x

γ
t+∆t remains within the

encounter region, i.e., for −∆ts ≤ ∆t ≤ ∆tu, see Fig. 6. Since the number of partner orbits is equal to the number of
encounter regions one has now to count each encounter region exactly once. This can be achieved in two alternative
ways:

1. One can measure the flux of vectors δ~y through the hypersurface defining the end of the encounter region (see
Fig. 6). According to the definition of the encounter region given in Subsection II D, this hypersurface consists
of the faces ∂ C±

j = {(si, ui) : |si| ≤ c, |ui| ≤ c, uj = ±c}, j = 1, . . . , f − 1, of the hypercube C = {(si, ui) : |si| ≤
c, |ui| ≤ c}. The union of all these faces defines a (2f − 3)-dimensional closed hypersurface ∂ C contained in the
(2f −2)-dimensional PSS. The corresponding flux is obtained by multiplying the density ργ with the component
u̇j of the velocity of the vector δ~y in the direction normal to ∂ C±

j . This velocity is given by u̇j = χj(x
γ
t ) c, see

Eq. (26). Integrating along the orbit we obtain

df−1Nγ({Si})
dS1 . . . dSf−1

=

Tγ
∫

0

dt

f−1
∑

j=1

c
∫

−c

df−1s df−1u ργ({si, ui};xγ
t ) χj(x

γ
t ) c

×
(

δ(uj − c) + δ(uj + c)
)

(

f−1
∏

i=1

δ(Sclsiui − Si)

)

. (44)

The last product of delta functions restricts the action differences to the values {Si}. It should be noted that,
since the local growth rate χj(x

γ
t ) can take negative values for some times t, the vector δ~y may also re-enter into

the hypercube C through some face ∂ C±
k with a negative normal velocity u̇k = χk(xγ

t ) c (with possibly k 6= j).
However, since δ~y increases exponentially with time at large times, there is one more passing of δ~y through ∂ C
in the outwards direction (u̇ > 0) than in the inwards direction (u̇ < 0). The contributions of all subsequent
passings then mutually cancel each other in Eq. (44). Hence, for each encounter region, only the first crossing
of ∂ C at time ∆t = ∆tu is accounted for, as required. Let us also mention that if we had taken any other closed
hypersurface contained in the hypercube C instead of ∂ C the same result would have been obtained. This is
because the dynamics conserves the number of points in phase space and thus the number of vectors δ~y.

2. An alternative version of Eq. (44), treating all points within the encounter region on equal footing, can be found
as follows. Every vector δ~y is counted as long as it remains within the hypercube C. Therefore one has to include
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c uj

j

c

s

region
encounter

FIG. 6: Schematic drawing of a projection of the Poincaré surface of section (PSS). The flow of intersection points (black filled
circles) is represented by the thin arrows. For long enough time the unstable component uj grows while the stable component
sj shrinks with Sj = Sclsjuj being constant. There are two ways to count the intersection points. Either the flux through the
uj = c surface (dotted line) is considered, as in Eq. (44), or one counts the number of points in the volume of the encounter
region (dashed area) and normalizes that by the time each point spends in there, as in Eq. (45).

the additional factor of 1/tenc, since per definition (31), tenc is approximately the time each vector δ~y spends
within that hypercube. The density of partner orbits (44) can thus be rewritten as

df−1Nγ({Si})
dS1 . . . dSf−1

≃
Tγ
∫

0

dt

c
∫

−c

df−1s df−1u
ργ({si, ui};xγ

t )

tenc({si, ui};xγ
t )

(

f−1
∏

i=1

δ(Sclsiui − Si)

)

. (45)

More precisely, this expression can be derived as follows (also see the Appendix ). Consider first only the
contribution of the encounters at x

γ
t after time tl − 2t, for a fixed tl and an arbitrary time t. The time duration

tenc of the encounter and the product uisi of the stable and unstable components of the vector δ~y(xγ
t , tl−2t) are

independent of t as long as x
γ
t stays within an encounter region, i.e., while si and ui vary within (−c, c). The

time spent by the point characterized by δ~y(xγ
t , tl − 2t) within the hypercube C is approximately equal to tenc

in the limit |ui|, |si| ∼
√

h̄/Scl ≪ 1, where tenc is large (of order ln h̄). Indeed, although possible re-entrances of
δ~y into C (see above) may increase the total time spent by δ~y inside C to a value greater than tenc, the relative
error made by approximating it by tenc is small. Using also the fact that the above–specified encounter regions
are disjoint (if they were overlapping they would define one bigger region), it follows that the r.h.s. of Eq. (45)
gives approximately the density of those encounter regions with respect to the action differences {Si}. The
result (45) then follows by integrating tl over all possible values.

Actually, expressions (44) and (45) are equivalent. Using the fact that the number of vectors δ~y is conserved by
the dynamics, one can transform the integrals over the hypersurface ∂ C into an integral over the entire volume of the
hypercube. More details on this proof of the equality between Eq. (44) and Eq. (45) are given in the Appendix . It is
important for what follows to note that this equality still holds if the range of integration of tl in Eq. (43) is replaced
by the larger interval (0, Tγ) which corresponds to the additional inclusion of intersection points δ~y that cannot be
associated with a partner orbit. The reason for the introduction of the two different expressions for the number of
partner orbits is because of its crucial importance from a technical point of view. We will apply either Eq. (44) or
Eq. (45) depending on which one can be calculated easier. It will turn out that this allows for a major simplification
of the derivations to follow. In particular, the complicated analytic structure of tenc({si, ui};x), see Eqs. (30) and
(31), does not directly enter the calculations.

The periodic–orbit average of the density of partner orbits in Eq. (44) or Eq. (45) can be transformed into an
average over the constant–energy surface by means of the sum rule (18). After this step has been performed, the
density ργ has to be evaluated at arbitrary points x on a set of measure one inside the constant–energy surface, instead
of taking the points x

γ
t belonging to periodic orbits as the arguments. For such points x one can neglect classical

correlations between x and T xtl for 2∆tu ≤ tl ≤ T − 2∆ts. This is because λ−1
i ≪ ∆tu,s ≪ T in the relevant limit

|si|, |ui| ∼
√

h̄/Scl ≪ 1, T ∼ TH ∼ h̄1−f . More precisely, ergodicity allows one to approximate the time integral in
Eq. (43) by a phase–space average,
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ρ({si, ui};x) ≈ T − 2∆ts({si};x) − 2∆tu({ui};x)

Ω

∫

dx′ δ(E − H(x′)) δ
(

[x − T x′]‖
)

f−1
∏

i=1

δ ([x − T x′]u,i − ui) δ ([x − T x′]s,i − si) . (46)

Since the Jacobian of the transformation (δq⊥, δp⊥) → (si, ui) gives a factor Sf−1
cl this yields

ρ({si, ui};x) ≈ ρlead + ρcorr({si, ui};x) (47)

=
Sf−1

cl

Ω
T − Sf−1

cl

Ω
2tenc({si, ui};x) .

Therefore ρ is given by a leading contribution plus a small correction term due to the exclusion of short times tl violating
condition (37). The corrections to the ergodic approximation are not written in Eqs. (46) and (47). Although they
may be bigger than ρcorr, one expects them to be strongly reduced after averaging x over the constant–energy surface,
as required by the sum rule. This is not the case for the correction term ρcorr, which, as we shall see now, determines
the form factor.

Indeed, if only the leading term ρlead in the density (47) is considered, one finds that the form factor (42) vanishes
in the semiclassical limit for the following reason. As ρlead does not depend on x and {si, ui}, its contribution to the
density of partner orbits can be most easily calculated by means of Eq. (44). It yields

〈

df−1Nγ({Si})
dS1 . . . dSf−1

〉(lead)

po,T

≈ 2f−1 T 2

Ω

f−1
∑

j=1

λj

f−1
∏

i6=j

ln

(

Sclc
2

|Si|

)

. (48)

Here we have used the identity χj(x) = λj . If this result (48) is inserted into the expression for the form factor (42),

one obtains K(2)(τ) = 0 due to the energy average.
Therefore the small correction term ρcorr given in Eq. (47) is of crucial importance. To determine its contribution

to the form factor, it turns out to be technically favorable to use expression (45) instead of Eq. (44) for the density of
partner orbits. The reason is that the two appearances in Eqs. (45) and (47) of tenc mutually cancel. Inserting ρcorr

from Eq. (47) into Eq. (45), one finds

〈

df−1Nγ({Si})
dS1 . . .dSf−1

〉(corr)

po,T

= −2f T

Ω

f−1
∏

i=1

ln

(

Sclc
2

|Si|

)

. (49)

The result (48) together with Eq. (49) gives the correct asymptotic form of the averaged density of partners in the
limit h̄ → 0, τ = T/TH fixed. Since the leading term (48) gives a vanishing contribution to the form factor (42), only
the correction (49) determines the final result,

K(2)(τ) ≃ −2τ2 TH

Ω

f−1
∏

i=1







−2

∞
∫

−∞

dSi exp

(

i
Si

h̄

)

ln

( |Si|
Sclc2

)







≃ −2τ2 . (50)

This result is universal, i.e., it does not contain any information about the set of Lyapunov exponents {λi} or
the constant c defining the encounter region. Thus as our first major result we find that the next-to-leading order
correction beyond the diagonal approximation agrees with the BGS conjecture independently of the number of degrees
of freedom the system possesses.

III. MATRIX ELEMENTS FLUCTUATIONS

The aim of this section is to evaluate the generalized form factor Kab(T ) defined in Eq. (4) based on the method
developed in the previous section. This form factor describes the correlations of the diagonal matrix elements 〈n|â|n〉
and 〈m|b̂|m〉, corresponding to distinct energies En and Em, of two given quantum observables â and b̂. We assume

that â and b̂ have well–behaved classical limits given by smooth Weyl symbols a(x) and b(x).
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A. Leading term

To zeroth order in h̄, the form factor (4) is given by

Kab(T ) ≈ a(x) b(x)K(T ) . (51)

Actually, Snirelman’s theorem [17] for classical ergodic flows implies that the Wigner functions of almost all eigenstates
|n〉 with energies En converging to E are uniformly distributed over the constant–energy surface H(x) = E in the
semiclassical limit. Equivalently, this means that the matrix elements 〈n|â|n〉 converge to the average (7),

〈n|â|n〉 → a(x)

as h̄ → 0 , n → ∞ such that En ≈ E . (52)

It is worthwhile to mention that this is only true for eigenstates |n〉 of the quantum Hamiltonian pertaining to a
“set of density one” [38]. Heller’s scars [30] are prominent examples of “exceptional” eigenstates violating Eq. (52).
Choosing, e.g., a Gaussian weight of width ∆E in the energy average in Eq. (2), one can express Kab(T ) for T > ∆T/2
as

Kab(T ) =
1

〈d(E)〉∆E

1√
2π∆E2

∑

n,m

〈n|â|n〉〈m|b̂|m〉e− i

h̄
(Em−En)T h(Em − En)

× exp

(

− (En + Em − 2E)2

8∆E2

)

. (53)

Since all functions of En and Em vary noticeably on the scale ∆E ≫ 〈d(E)〉−1
∆E , the eigenstates not belonging to

the “set of density one”, such as scars, have a negligible contribution to the sum in Eq. (53). One can then replace

〈n|â|n〉〈m|b̂|m〉 by the product a(x) b(x) and move this factor out of the sum. This yields Eq. (51), which is therefore
a direct consequence of Snirelman’s theorem.

To obtain information on matrix element fluctuations, one thus needs to study the semiclassical corrections (next
term in power of h̄) to the leading behavior (51) of the form factor. Let us define

â′ = â − a(x)1̂ , b̂′ = b̂ − b(x)1̂ , (54)

so that the associated Weyl symbols a′(x) and b′(x) average to zero. Then the form factor Kab(T ) is related to
Ka′b′(T ) by the formula

Kab(T ) − a(x) b(x)K(T ) = (55)

Ka′b′(T ) + a(x)K1b′(T ) + b(x)Ka′1(T ) .

Comparing with Eq. (51), one sees that the r.h.s. of Eq. (55) vanishes as h̄ → 0. The purpose of the two next

subsections is to estimate the first term of the r.h.s., which turns out to be proportional to 1/TH = O(h̄f−1). We
start with the diagonal contribution of pairs of identical orbits (modulo time–reversal) to Ka′b′(T ) and then include
the pairs of correlated orbits (γ, γp) studied in Section II. We restrict our derivation to the case of observables with

vanishing mean, i.e., a(x) = b(x) = 0 so that a = a′ and b = b′. Therefore we shall not be concerned further in this
paper with the second and third terms in Eq. (55).

B. Correction term within the diagonal approximation

Let us first consider the semiclassical correction to the leading term (51) within the diagonal approximation. This
correction has been already studied in Refs. [12, 13, 14, 15]. However, we will argue below that the results of
Refs. [12, 13, 14, 15] can only be applied to observables a(x) or b(x) independent of the momentum p. We treat here
the more general case of smooth observables a and b depending on both the position q and the momentum p, by
following the lines of Subsection IIC of Ref. [13].

Retaining only the contribution of those pairs obtained by pairing each orbit with itself or with its time–reversed
version in the double sum (16), the semiclassical form factor can be written as
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K
(1)
ab (T ) =

1

TH

〈

∫ Tγ

0

dt

Tγ
a(xγ

t )

(

∫ Tγ

0

dt′′ b(xγ
t′′) +

∫ Tγ

0

dt′′ b(T x
γ
t′′)

)〉

po,T

. (56)

Substituting t′ = t′′ − t and using the periodicity of γ yields

K
(1)
ab (T ) =

2

TH

∫ T

0

dt

〈

∫ Tγ

0

dt′

Tγ
a(xγ

t )bS(xγ
t+t′)

〉

po,T

(57)

with bS(x) as given in Eq. (9).
We now assume that the classical dynamics is sufficiently chaotic so that the time–correlation function (9) of the

classical observables a(x) and bS(x) decays faster than 1/t to zero. In strongly chaotic systems all classical correlation
functions of smooth observables decay exponentially, as a result of a gap in the spectrum of the resonances of the
Frobenius–Perron operator (all resonances but the one corresponding to the Liouville measure are contained inside a
circle of radius strictly smaller than unity) [26]. The mixing property makes sure that the time–correlation function
CS

ab(t) tends to zero in the large-t limit, but is still not strong enough for our purpose: it does not imply that CS
ab(t)

can be integrated from 0 to ∞.
Applying the sum rule (18) to Eq. (57) gives

K
(1)
ab (T ) ≃ 2

TH

∫ ∞

0

dt′ CS
ab(t

′) (58)

in the limit h̄ → 0 with τ = T/TH fixed. If a(x) or b(x) is a function of the position q only, then aS(x) = a(x) or
bS(x) = b(x), respectively. As a result, CS

ab(t) = Cab(t). In such a case, Eq. (58) coincides with the result of Refs. [12]
and [13]. In the opposite case, the mean CS

ab(t) of the correlation function of a(x) and b(x) and the correlation
function of a(x) and b(T x) must be considered.

As noted in Ref. [13], some chaotic systems which fulfill the mixing property, such as the symmetric stadium billiard,

exhibit algebraic decays of correlations in 1/t. Then the integral in Eq. (58) diverges and the form factor K
(1)
ab is of

order T−1
H lnTH instead of T−1

H .

Let us also mention that, for chaotic dynamics, the integrals
∫ T

0 dt a(xt) and
∫ T

0 dt bS(xt) of the observables a(x)

and bS(x) along pieces of (nonperiodic) trajectories of time T , thought as function of the initial point x, may be
often considered as Gaussian random variables with respect to the Liouville measure for large T ’s [26]. These random
variables have a system–specific covariance 2T

∫∞

0
dt CS

ab(t), which is thus also related to the fluctuations of the

diagonal matrix elements of â and b̂ as given by Kab(T ).

C. Contribution of the partner orbits

The contribution of the partner orbits to the semiclassical form factor (16) is obtained by inserting the product
Aγ Bγp of the integrals of the classical observable a(x) along γ and of the observable b(x) along γp in front of the
exponential in Eq. (41). The forthcoming calculation is simplified by noting that if γp is a partner orbit of γ, then its
time–reversed version γp,i is also a partner orbit of γ, with the same action. This is because if one exchanges the role
of parts R and L in the definition (32), the corresponding partner orbit is just γp,i. As a result, one may equivalently
insert Aγ(Bγp + Bγp,i)/2 in front of the exponential in Eq. (41), instead of Aγ Bγp . The mean (Bγp + Bγp,i)/2 is the

integral of the symmetrized observable bS(x) given by Eq. (9) along γp. It can be estimated by applying Eq. (40) to
bS(x) and using bS(x) = bS(T x) together with the periodicity of γ. This yields

1

2

(

Bγp + Bγp,i

)

≃
∫ Tγ

0

dt′′

Tγ
bS(xγ

t′′ ) (59)

and reflects the fact that the two orbits γ and γi explore almost the same phase–space regions as the two partner
orbits γp and γp,i. Hence the generalization of Eq. (42) reads
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K
(2)
ab (τ) = τ

〈 Smax(E)
∫

−Smax(E)

dS1 . . .dSf−1

〈

df−1Nγ({Si})
dS1 . . . dSf−1

∫ Tγ

0

dt′

Tγ

∫ Tγ

0

dt′′

Tγ
a(xγ

t′ )b
S(xγ

t′+t′′)

〉

po,τTH

× exp

(

i

f−1
∑

i=1

Si

h̄

)〉

∆E

. (60)

By using Eq. (44) and substituting t′ → t′′′ = t′ − t before applying the sum rule (18), one finds that the leading
contribution ρlead to the density in Eq. (47) yields

〈

df−1Nγ({Si})
dS1 . . . dSf−1

∫ Tγ

0

dt′

Tγ

∫ Tγ

0

dt′′

Tγ
a(xγ

t′)b
S(xγ

t′+t′′)

〉(lead)

po,T

≈ 2f−1

Ω

f−1
∑

j=1

f−1
∏

i6=j

ln

(

Sclc
2

|Si|

) ∫ T

0

dt′′′
∫ T

0

dt′′ χj(x) a(xt′′′ )bS(xt′′′+t′′) . (61)

Employing ergodicity, the integral over t′′′ can be approximated by a phase–space average and yields

T χj(x)
∫∞

0 dt′′ CS
ab(t

′′). Thus inserting Eq. (61) into Eq. (60) gives K
(2)
ab (τ) = 0. As in Section II, the contribu-

tion to the form factor of ρlead thus vanishes. By using Eq. (45), we obtain the contribution of the small correction
term ρ(corr) in Eq. (47),

〈

df−1Nγ({Si})
dS1 . . . dSf−1

∫ Tγ

0

dt′

Tγ

∫ Tγ

0

dt′′

Tγ
a(xγ

t′)b
S(xγ

t′+t′′)

〉(corr)

po,T

≈ −2f 1

ΩT

f−1
∏

i=1

ln

(

Sclc
2

|Si|

)∫ T

0

dt′′′
∫ T

0

dt′′ a(xt′′′)bS(xt′′′+t′′) (62)

since the dependence on tenc({si, ui};x) in Eq. (45) and Eq. (47) mutually cancels. The average a(xt′′′ )bS(xt′′′+t′′)
equals the correlation function CS

ab(t
′′). It follows from Eq. (50) that, as h̄ → 0,

K
(2)
ab (τ) ≈ −2τ

1

TH

∫ ∞

0

dt CS
ab(t) . (63)

Remarkably, one obtains for the leading off-diagonal contribution the same result as for the diagonal approximation,
with 2 replaced by −2τ as in the spectral form factor. In particular this means that the classical correlations enter in
exactly the same way via the correlation function CS

ab(t). Assuming that only identical orbits modulo time–reversal
symmetry and pairs of partner orbits (γ, γp) contribute to the semiclassical form factor (16) up to order τ2 included,
this yields

Kab(τ) ≈ 1

τ TH

(

K(τ) + O(τ3)
)

∫ ∞

0

dt CS
ab(t) (64)

as announced in the introduction. This result holds if the correlation function CS
ab(t) decays faster than 1/t as t → ∞,

in order that the upper integration limit T = τTH may be replaced by ∞. It is valid for observables â and b̂ such
that a(x) = b(x) = 0 only.

If a(x) 6= 0 or b(x) 6= 0, Eq. (55) must be used and the second and third terms in the r.h.s. of this equation have
to be estimated. Repeating the above calculation for these terms, one finds that both vanish in zeroth order in h̄,
thus being in accordance with Snirelman’s theorem. For instance, within the diagonal approximation, Eq. (56) gives

K
(1)
a′1(T ) = 2T−1

H 〈
∫ Tγ

0 dt a′(xγ
t )〉po,T ≈ 2τ a′(x), which is zero since a′(x) = 0. The leading contribution in h̄ is thus

governed by the finite–time corrections to the sum rule (18). Similarly, replacing a by a′ and b by 1 in Eq. (62), the

second integral in the second member becomes T a′(x), which means that K
(2)
a′1(T ) ≈ 0 up to higher–order corrections

in the sum rule. One concludes that our method does not allow us to estimate Ka′1 as h̄ → 0 beyond the leading
order in h̄. For systems with exponential decay of classical correlation functions, it is not irreasonable to expect that
the finite–time corrections to the sum rule (18) are exponentially small in T . In such a case Ka′1 and K1b′ would be

negligible with respect to Ka′b′ , which is of order h̄f−1 by Eq. (64).
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IV. SUMMARY AND OUTLOOK

In this work we presented a semiclassical evaluation of the generalized form factor Kab(τ) going beyond the diagonal
approximation. We first considered the spectral form factor K(τ) = K11(τ) for systems with more than two degrees
of freedom, i.e., f ≥ 2. We proved that the leading contribution due to pairs of periodic orbits with correlated actions
is independent of f in agreement with the RMT prediction. An important step in our calculation was to show the
equivalence between the two different approaches for counting partner orbits which were independently developed
in Ref. [9] and Refs. [8, 25] for two–dimensional systems. Based on these results for the spectral form factor we
then investigated the generalized form factor Kab(τ). In this case we were able to show a universal dependence of
Kab(τ) on the rescaled time τ . Furthermore, we found that the contribution of the partner orbits depends on the
classical time–correlation function CS

ab(t) in exactly the same way as in the diagonal approximation, see Eq. (64). An
interesting open question is to prove (or disprove) that this is still the case at higher orders in τ or even for arbitrary
large τ > 1. In such a case one could get rid of the error term O(τ3) added to K(τ) in Eq. (64).

Our semiclassical treatment of the generalized form factor beyond the diagonal approximation can in principle
be extended to other physical observables containing matrix elements in chaotic systems. This includes expressions
where transition matrix elements play a role [31, 33] (e.g., dipole excitations in quantum dots [32]), and linear response
functions for mesoscopic systems [34] with applications to transport, magnetism, or optical response. So far, nearly
all semiclassical approaches to such quantities have been relying on the diagonal approximation, as long as additional
averages are involved. A notable exception is the calculation of the weak localization correction to the conductance
in Ref. [35], showing an important contribution of the partner orbits. It would thus be of great interest to study the
corrections to the diagonal approximation in the various response functions appearing in mesoscopic physics.

Acknowledgments: We acknowledge support from the Deutsche Forschungsgemeinschaft (Ri 681/5 and SFB/TR
12). We are grateful to B. Eckhardt and U. Smilansky for interesting discussions. SM also thanks P. Braun, F. Haake,
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APPENDIX: TRANSFORMATION OF THE SURFACE INTEGRAL INTO A VOLUME INTEGRAL

In this appendix we prove the equality of the two different approaches for counting the partner orbits based on
Eq. (44) and Eq. (45), respectively. To this end we show that an equality of the general structure

T
∫

0

dt

∫

V

dVδ~y
̺(δ~y, t)

tV(δ~y, t)
=

T
∫

0

dt

∫

∂Vout

d ~Aδ~y ̺(δ~y, t) ˙δ~y(δ~y, t) (A.1)

holds under the conditions which are relevant for the statistics of the number of partners. Here, δ~y is a vector
in a multidimensional space, e.g., the (2f − 2)-dimensional PSS. The volume element in this space is given by

dVδ~y = df−1u df−1s while d ~Aδ~y characterizes the surface element. The left hand side of Eq. (A.1) thus contains
an integral over any (2f − 2)-dimensional volume V in the PSS. Inside V we follow the time evolution of a density

field ̺(δ~y, t); the corresponding velocity field is denoted by ˙δ~y(δ~y, t). As Eq. (A.1) is applied to the PSS following a

periodic orbit of length T , we can assume periodicity such that ̺(δ~y, t) = ̺(δ~y, t + T ) and ˙δ~y(δ~y, t) = ˙δ~y(δ~y, t + T ).
Due to current conservation the density is constant along the flow, i.e., ̺(δ~y, 0) = ̺(δ~yt, t) or ˙̺(δ~yt, t) = 0. The time
tV(δ~y, t) in Eq. (A.1) is defined as the total time a point spends in the volume V if it starts at time t at position δ~y
and moves until time t+T . If the volume V is chosen to coincide with the hypercube C defining the encounter region,
see Subsection II D, then tV is approximately equal to the time tenc, Eq. (31). The surface of V is decomposed as
∂V = ∂Vin + ∂Vout. Here, ∂Vin/out stands for that part of the total surface through which the flux defined by ̺ and
˙δ~y enters or leaves V in the long–time limit, respectively. More precisely speaking, the total flux between time 0 and

T through any piece of ∂Vout must be positive.
For the proof of relation (A.1) let us first consider the case where the total density ̺(δ~y, t) is given by a single point

starting at δ~y0, i.e., ̺1(δ~y, t) = δ(δ~y − δ~yt). Then the time tV is given as

tV(δ~yt, t) =

t+T
∫

t

dt′ ΘV(δ~yt′) =

T
∫

0

dt′
∫

V

dVδ ~y ′ ̺1(δ~y ′, t′)

= tV(δ~y0, 0) , (A.2)
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where ΘV(δ~y) equals 1 if δ~y ∈ V and zero otherwise. In Eq. (A.2) we made use of the periodicity of the motion. We
then obtain for the left hand side of Eq. (A.1)

T
∫

0

dt

∫

V

dVδ~y
̺1(δ~y, t)

tV(δ~y, t)
= (A.3)

1

tV(δ~y0, 0)

T
∫

0

dt

∫

V

dVδ~y ̺1(δ~y, t) = 1 .

In close analogy we thus find that if the single point density is replaced by ̺(δ~y, t) =
∑

i ̺i(δ~y, t) which represents an
arbitrary number n of points given by their initial conditions then the left hand side of Eq. (A.1) just gives the total
number of particles n that pass V during one period. But this is exactly what the right hand side of Eq. (A.1) gives.
It just measures the outgoing flux through the surface of V between time 0 and T which also yields the total number
of particles n because the particle number is conserved.

Finally we also note that the density ̺(δ~y, t) is not restricted to a sum of δ functions. Each of these δ functions can
also be multiplied with any function g(δ~y, t) that is constant when following the flow within V , i.e., g(δ~y0, 0) = g(δ~yt, t).
In the context of Subsection II G, g could, for example, be any function of the action difference as in Eqs. (44) and (45).
In this case the density ̺ entering Eq. (A.1) can be considered as a weighted density ̺ = ρ g.

If all local unstable growth rates χk(x) are non-negative one can directly identify tV = tenc and thus the equality
(A.1) means that Eq. (44) exactly equals Eq. (45). On the other hand, if these local unstable growth rates assume
negative values in certain areas of the phase space then this implies that the unstable components of a displacement
vector can also decrease on short time scales. This would lead to a multiple entry of the same point into the ’encounter
region’ characterized by V = C. In this case the relation (A.1) means that Eq. (45) is asymptotically equal to Eq. (44)
as the length tenc becomes large so that |tV − tenc| ≪ tenc or similarly tV ≃ tenc.
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