1,155 research outputs found

    Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field

    Get PDF
    We examine the motion in Schwarzschild spacetime of a point particle endowed with a scalar charge. The particle produces a retarded scalar field which interacts with the particle and influences its motion via the action of a self-force. We exploit the spherical symmetry of the Schwarzschild spacetime and decompose the scalar field in spherical-harmonic modes. Although each mode is bounded at the position of the particle, a mode-sum evaluation of the self-force requires regularization because the sum does not converge: the retarded field is infinite at the position of the particle. The regularization procedure involves the computation of regularization parameters, which are obtained from a mode decomposition of the Detweiler-Whiting singular field; these are subtracted from the modes of the retarded field, and the result is a mode-sum that converges to the actual self-force. We present such a computation in this paper. There are two main aspects of our work that are new. First, we define the regularization parameters as scalar quantities by referring them to a tetrad decomposition of the singular field. Second, we calculate four sets of regularization parameters (denoted schematically by A, B, C, and D) instead of the usual three (A, B, and C). As proof of principle that our methods are reliable, we calculate the self-force acting on a scalar charge in circular motion around a Schwarzschild black hole, and compare our answers with those recorded in the literature.Comment: 38 pages, 2 figure

    Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole/slow-motion approximation

    Full text link
    The first objective of this work is to obtain practical prescriptions to calculate the absorption of mass and angular momentum by a black hole when external processes produce gravitational radiation. These prescriptions are formulated in the time domain within the framework of black-hole perturbation theory. Two such prescriptions are presented. The first is based on the Teukolsky equation and it applies to general (rotating) black holes. The second is based on the Regge-Wheeler and Zerilli equations and it applies to nonrotating black holes. The second objective of this work is to apply the time-domain absorption formalisms to situations in which the black hole is either small or slowly moving. In the context of this small-hole/slow-motion approximation, the equations of black-hole perturbation theory can be solved analytically, and explicit expressions can be obtained for the absorption of mass and angular momentum. The changes in the black-hole parameters can then be understood in terms of an interaction between the tidal gravitational fields supplied by the external universe and the hole's tidally-induced mass and current quadrupole moments. For a nonrotating black hole the quadrupole moments are proportional to the rate of change of the tidal fields on the hole's world line. For a rotating black hole they are proportional to the tidal fields themselves.Comment: 36 pages, revtex4, no figures, final published versio

    A time-domain fourth-order-convergent numerical algorithm to integrate black hole perturbations in the extreme-mass-ratio limit

    Full text link
    We obtain a fourth order accurate numerical algorithm to integrate the Zerilli and Regge-Wheeler wave equations, describing perturbations of nonrotating black holes, with source terms due to an orbiting particle. Those source terms contain the Dirac's delta and its first derivative. We also re-derive the source of the Zerilli and Regge-Wheeler equations for more convenient definitions of the waveforms, that allow direct metric reconstruction (in the Regge-Wheeler gauge).Comment: 30 pages, 12 figure

    Perspective on gravitational self-force analyses

    Full text link
    A point particle of mass μ\mu moving on a geodesic creates a perturbation habh_{ab}, of the spacetime metric gabg_{ab}, that diverges at the particle. Simple expressions are given for the singular μ/r\mu/r part of habh_{ab} and its distortion caused by the spacetime. This singular part h^\SS_{ab} is described in different coordinate systems and in different gauges. Subtracting h^\SS_{ab} from habh_{ab} leaves a regular remainder habRh^\R_{ab}. The self-force on the particle from its own gravitational field adjusts the world line at \Or(\mu) to be a geodesic of gab+habRg_{ab}+h^\R_{ab}; this adjustment includes all of the effects of radiation reaction. For the case that the particle is a small non-rotating black hole, we give a uniformly valid approximation to a solution of the Einstein equations, with a remainder of \Or(\mu^2) as μ0\mu\to0. An example presents the actual steps involved in a self-force calculation. Gauge freedom introduces ambiguity in perturbation analysis. However, physically interesting problems avoid this ambiguity.Comment: 40 pages, to appear in a special issue of CQG on radiation reaction, contains additional references, improved notation for tensor harmonic

    Quasi-local contribution to the scalar self-force: Geodesic Motion

    Full text link
    We consider a scalar charge travelling in a curved background spacetime. We calculate the quasi-local contribution to the scalar self-force experienced by such a particle following a geodesic in a general spacetime. We also show that if we assume a massless field and a vacuum background spacetime, the expression for the self-force simplifies significantly. We consider some specific cases whose gravitational analog are of immediate physical interest for the calculation of radiation reaction corrected orbits of binary black hole systems. These systems are expected to be detectable by the LISA space based gravitational wave observatory. We also investigate how alternate techniques may be employed in some specific cases and use these as a check on our own results.Comment: Final Phys. Rev. D version. 24 pages, revtex4. Minor typos correcte

    Gravitational waveforms from a point particle orbiting a Schwarzschild black hole

    Full text link
    We numerically solve the inhomogeneous Zerilli-Moncrief and Regge-Wheeler equations in the time domain. We obtain the gravitational waveforms produced by a point-particle of mass μ\mu traveling around a Schwarzschild black hole of mass M on arbitrary bound and unbound orbits. Fluxes of energy and angular momentum at infinity and the event horizon are also calculated. Results for circular orbits, selected cases of eccentric orbits, and parabolic orbits are presented. The numerical results from the time-domain code indicate that, for all three types of orbital motion, black hole absorption contributes less than 1% of the total flux, so long as the orbital radius r_p(t) satisfies r_p(t)> 5M at all times.Comment: revtex4, 24 pages, 23 figures, 3 tables, submitted to PR

    Simulations of Extreme-Mass-Ratio Inspirals Using Pseudospectral Methods

    Full text link
    Extreme-mass-ratio inspirals (EMRIs), stellar-mass compact objects (SCOs) inspiralling into a massive black hole, are one of the main sources of gravitational waves expected for the Laser Interferometer Space Antenna (LISA). To extract the EMRI signals from the expected LISA data stream, which will also contain the instrumental noise as well as other signals, we need very accurate theoretical templates of the gravitational waves that they produce. In order to construct those templates we need to account for the gravitational backreaction, that is, how the gravitational field of the SCO affects its own trajectory. In general relativity, the backreaction can be described in terms of a local self-force, and the foundations to compute it have been laid recently. Due to its complexity, some parts of the calculation of the self-force have to be performed numerically. Here, we report on an ongoing effort towards the computation of the self-force based on time-domain multi-grid pseudospectral methods.Comment: 6 pages, 4 figures, JPCS latex style. Submitted to JPCS (special issue for the proceedings of the 7th International LISA Symposium

    A matched expansion approach to practical self-force calculations

    Full text link
    We discuss a practical method to compute the self-force on a particle moving through a curved spacetime. This method involves two expansions to calculate the self-force, one arising from the particle's immediate past and the other from the more distant past. The expansion in the immediate past is a covariant Taylor series and can be carried out for all geometries. The more distant expansion is a mode sum, and may be carried out in those cases where the wave equation for the field mediating the self-force admits a mode expansion of the solution. In particular, this method can be used to calculate the gravitational self-force for a particle of mass mu orbiting a black hole of mass M to order mu^2, provided mu/M << 1. We discuss how to use these two expansions to construct a full self-force, and in particular investigate criteria for matching the two expansions. As with all methods of computing self-forces for particles moving in black hole spacetimes, one encounters considerable technical difficulty in applying this method; nevertheless, it appears that the convergence of each series is good enough that a practical implementation may be plausible.Comment: IOP style, 8 eps figures, accepted for publication in a special issue of Classical and Quantum Gravit

    Light-cone coordinates based at a geodesic world line

    Get PDF
    Continuing work initiated in an earlier publication [Phys. Rev. D 69, 084007 (2004)], we construct a system of light-cone coordinates based at a geodesic world line of an arbitrary curved spacetime. The construction involves (i) an advanced-time or a retarded-time coordinate that labels past or future light cones centered on the world line, (ii) a radial coordinate that is an affine parameter on the null generators of these light cones, and (iii) angular coordinates that are constant on each generator. The spacetime metric is calculated in the light-cone coordinates, and it is expressed as an expansion in powers of the radial coordinate in terms of the irreducible components of the Riemann tensor evaluated on the world line. The formalism is illustrated in two simple applications, the first involving a comoving world line of a spatially-flat cosmology, the other featuring an observer placed on the axis of symmetry of Melvin's magnetic universe.Comment: 11 pages, 1 figur

    Quasi-local contribution to the scalar self-force: Non-geodesic Motion

    Full text link
    We extend our previous calculation of the quasi-local contribution to the self-force on a scalar particle to general (not necessarily geodesic) motion in a general spacetime. In addition to the general case and the case of a particle at rest in a stationary spacetime, we consider as examples a particle held at rest in Reissner-Nordstrom and Kerr-Newman space-times. This allows us to most easily analyse the effect of non-geodesic motion on our previous results and also allows for comparison to existing results for Schwarzschild spacetime.Comment: 11 pages, 1 figure, corrected typo in Eq. 2.
    corecore