research

Perspective on gravitational self-force analyses

Abstract

A point particle of mass μ\mu moving on a geodesic creates a perturbation habh_{ab}, of the spacetime metric gabg_{ab}, that diverges at the particle. Simple expressions are given for the singular μ/r\mu/r part of habh_{ab} and its distortion caused by the spacetime. This singular part h^\SS_{ab} is described in different coordinate systems and in different gauges. Subtracting h^\SS_{ab} from habh_{ab} leaves a regular remainder habRh^\R_{ab}. The self-force on the particle from its own gravitational field adjusts the world line at \Or(\mu) to be a geodesic of gab+habRg_{ab}+h^\R_{ab}; this adjustment includes all of the effects of radiation reaction. For the case that the particle is a small non-rotating black hole, we give a uniformly valid approximation to a solution of the Einstein equations, with a remainder of \Or(\mu^2) as μ0\mu\to0. An example presents the actual steps involved in a self-force calculation. Gauge freedom introduces ambiguity in perturbation analysis. However, physically interesting problems avoid this ambiguity.Comment: 40 pages, to appear in a special issue of CQG on radiation reaction, contains additional references, improved notation for tensor harmonic

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 16/03/2019