147 research outputs found

    Double Quantum Dots in Carbon Nanotubes

    Full text link
    We study the two-electron eigenspectrum of a carbon-nanotube double quantum dot with spin-orbit coupling. Exact calculation are combined with a simple model to provide an intuitive and accurate description of single-particle and interaction effects. For symmetric dots and weak magnetic fields, the two-electron ground state is antisymmetric in the spin-valley degree of freedom and is not a pure spin-singlet state. When double occupation of one dot is favored by increasing the detuning between the dots, the Coulomb interaction causes strong correlation effects realized by higher orbital-level mixing. Changes in the double-dot configuration affect the relative strength of the electron-electron interactions and can lead to different ground state transitions. In particular, they can favor a ferromagnetic ground state both in spin and valley degrees of freedom. The strong suppression of the energy gap can cause the disappearance of the Pauli blockade in transport experiments and thereby can also limit the stability of spin-qubits in quantum information proposals. Our analysis is generalized to an array of coupled dots which is expected to exhibit rich many-body behavior.Comment: 14 pages, 11 pages and 1 table. Typos in text and Figs.4 and 6 correcte

    Resonant Five-body Recombination in an Ultracold Gas of Bosonic Atoms

    Get PDF
    We combine theory and experiment to investigate five-body recombination in an ultracold gas of atomic cesium at negative scattering length. A refined theoretical model, in combination with extensive laboratory tunability of the interatomic interactions, enables the five-body resonant recombination rate to be calculated and measured. The position of the new observed recombination feature agrees with a recent theoretical prediction and supports the prediction of a family of universal cluster states at negative aa that are tied to an Efimov trimer.Comment: 14 pages, 5 figure

    Hyperspherical Description of the Degenerate Fermi Gas: S-wave Interactions

    Full text link
    We present a unique theoretical description of the physics of the spherically trapped NN-atom degenerate Fermi gas (DFG) at zero temperature based on an ordinary Schr\"{o}dinger equation with a microscopic, two body interaction potential. With a careful choice of coordinates and a variational wavefunction, the many body Schr\"{o}dinger equation can be accurately described by a \emph{linear}, one dimensional effective Schr\"{o}dinger equation in a single collective coordinate, the rms radius of the gas. Comparisons of the energy, rms radius and peak density of ground state energy are made to those predicted by Hartree-Fock (HF). Also the lowest radial excitation frequency (the breathing mode frequency) agrees with a sum rule calculation, but deviates from a HF prediction

    BEC-BCS Crossover of a Trapped Two-Component Fermi Gas with Unequal Masses

    Full text link
    We determine the energetically lowest lying states in the BEC-BCS crossover regime of s-wave interacting two-component Fermi gases under harmonic confinement by solving the many-body Schrodinger equation using two distinct approaches. Essentially exact basis set expansion techniques are applied to determine the energy spectrum of systems with N=4 fermions. Fixed-node diffusion Monte Carlo methods are applied to systems with up to N=20 fermions, and a discussion of different guiding functions used in the Monte Carlo approach to impose the proper symmetry of the fermionic system is presented. The energies are calculated as a function of the s-wave scattering length a_s for N=2-20 fermions and different mass ratios \kappa of the two species. On the BEC and BCS sides, our energies agree with analytically-determined first-order correction terms. We extract the scattering length and the effective range of the dimer-dimer system up to \kappa = 20. Our energies for the strongly-interacting trapped system in the unitarity regime show no shell structure, and are well described by a simple expression, whose functional form can be derived using the local density approximation, with one or two parameters. The universal parameter \xi for the trapped system for various \kappa is determined, and comparisons with results for the homogeneous system are presented.Comment: 11 pages, 6 figures, extended versio

    General Theoretical Description of \u3cem\u3eN\u3c/em\u3e-Body Recombination

    Get PDF
    Formulas for the cross section and event rate constant describing recombination of N particles are derived in terms of general S-matrix elements. Our result immediately yields the generalized Wigner threshold scaling for the recombination of N bosons. A semianalytical formula encapsulates the overall scaling with energy and scattering length, as well as resonant modifications by the presence of N-body states near the threshold collision energy in the entrance channel. We then apply our model to the case of four-boson recombination into an Efimov trimer and a free atom

    First order phase transitions in optical lattices with tunable three-body onsite interaction

    Full text link
    We study the two-dimensional Bose-Hubbard model in the presence of a three-body interaction term, both at a mean field level and via quantum Monte Carlo simulations. The three-body term is tuned by coupling the triply occupied states to a trapped universal trimer. We find that, for sufficiently attractive three-body interaction the n = 2 Mott lobe disappears and the system displays first order phase transitions separating the n = 1 from the n = 3 lobes, and the n = 1 and n = 3 Mott insulator from the superfluid. We have also analyzed the effect of finite temperature and found that transitions are still of first order at temperatures T\simJ where J is the hopping matrix element.Comment: introduction slightly changed, modified figure

    Universality in Four-Boson Systems

    Full text link
    We report recent advances on the study of universal weakly bound four-boson states from the solutions of the Faddeev-Yakubovsky equations with zero-range two-body interactions. In particular, we present the correlation between the energies of successive tetramers between two neighbor Efimov trimers and compare it to recent finite range potential model calculations. We provide further results on the large momentum structure of the tetramer wave function, where the four-body scale, introduced in the regularization procedure of the bound state equations in momentum space, is clearly manifested. The results we are presenting confirm a previous conjecture on a four-body scaling behavior, which is independent of the three-body one. We show that the correlation between the positions of two successive resonant four-boson recombination peaks are consistent with recent data, as well as with recent calculations close to the unitary limit. Systematic deviations suggest the relevance of range corrections.Comment: Accepted for publication in special issue of Few-Body Systems devoted to the Sixth Workshop on the Critical Stability of Quantum Few-Body Systems, October 2011, Erice, Sicily, Ital
    • …
    corecore