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Abstract. We combine theory and experiment to investigate five-body
recombination in an ultracold gas of atomic cesium at negative scattering length.
A refined theoretical model, in combination with extensive laboratory tunability
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to be calculated and measured. The position of the new observed recombination
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1. Introduction

Few-body physics with ultracold atoms has emerged as a new research field combining concepts
from atomic, nuclear and condensed-matter physics. A growing number of experimental and
theoretical studies have been focused on both the fundamentals of few-body phenomena [1]
and the connections with many-body systems [2, 3]. The cornerstone of recent experimental
advances is the control of interactions in an ultracold atomic gas, offered by magnetically
tuned Feshbach resonances [4]. In particular, the tunable s-wave scattering length a allows
one to access the regime of resonant two-body interactions. Here, the system is governed
by universal behavior, independent of the short-range details of the interaction potential. The
paradigm of universality is Efimov’s solution to the problem of three resonantly interacting
particles [5]. Once the intimate connection between Efimov states and three-body recombination
has been established [1, 6, 7], resonant loss features became the fingerprint of Efimov physics
in experimental studies with ultracold atoms [8–20].

Advances in three-body physics led to intriguing questions on the generalization of
Efimov’s scenario to more particles and on the existence and observability of universal few-
body cluster states [21–26]. N -body cluster states known as Brunnian states exist in a range
of interaction where no (N − 1)-body weakly bound subsystems are present [27, 28]. The
general connection, however, between cluster states and the three-body Efimov states has
remained an open issue. It was soon realized that no ‘true’ Efimov states8 with N > 3 exist,
because of the quite different scaling and threshold properties of the cluster states [29].
However, other approaches to extend universal Efimov theory to larger systems have been
pursued along different lines [30–32]. The development of accurate descriptions of four-boson
systems [33–35] demonstrates the existence of four-body states tied to each three-body Efimov
state. In a major extension of Efimov physics, von Stecher [36] predicts the existence of a family
of cluster states tied to an Efimov trimer.

According to [34–37], the binding energy of the cluster states follows universal scaling
laws, which are directly connected to the Efimov effect. Figure 1 shows the calculated energy
spectrum for the ground states of three-, four- and five-body clusters (lower panel). The
corresponding experimental observables are loss peaks in the atom number (upper panel), which

8 The ‘true’ Efimov effect refers to the appearance of an infinite number of N -body bound states, which have a
discrete scale invariance and which exhibit well-defined thresholds given by the (N − 1)-body subsystem.
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Figure 1. N -body scenario in the region of negative two-body scattering
length a. The lower panel shows the N -body binding energies as functions of
the inverse scattering length. EU

3 = (h̄κ)2/m is the trimer binding energy for
resonant interaction. The dotted, dashed and solid lines refer to the ground states
of the three-, four- and five-body cluster, respectively. Excited states are not
drawn here. The pictorial representations of the three-, four- and five-body bound
state illustrate one of the possible spatial arrangements of atoms, given that an N -
body cluster state has N (N − 1)(N − 2)/6 possible combinations of the three-
body sub-clusters. The upper panel shows the relative losses from the atomic
sample for a typical set of measurements, performed with a hold time of 100 ms
for a sample of 105 atoms at 100 nK in a trap with a mean trap frequency of about
30 Hz.

appear at values of the scattering length a−, a4,− and a5,−, where the three-, four- and five-body
states cross the free atom threshold, respectively. The resonant values of the scattering length
are predicted to be universally connected by the simple relations a4,− = 0.44(1) a− and a5,− =

0.65(1) a4,− [37]. A more recent study [38] has theoretically explored the four-boson resonance
and has determined its position with greater accuracy. For four-body states, the universal
relation has been confirmed in experiments [12, 19, 20, 39] and the four-body recombination
rate has been measured [39] and calculated within the hyperspherical framework [34]. A
straightforward extension to five-body systems is not currently possible for experiment or
theory. The experimental challenge is to discriminate the five-body recombination signal against
a strong background resulting from fewer-body processes. The numerical difficulty of the
scattering few-body problem grows exponentially with the number of particles making the
description of five and larger systems beyond current theoretical capabilities.

This paper presents a combined theoretical and experimental study of universal few-body
physics up to five-body states. We present strong evidence for the existence of an Efimov-related
cluster state of five identical bosons and we provide quantitative results for the corresponding
five-body recombination rate. Our results highlight a new level of understanding concerning
few-body physics and its experimental manifestations in ultracold atomic quantum gases.
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2. Theoretical approach

The theoretical analysis of N -body recombination processes requires the description of the
N -body scattering continuum. The hyperspherical framework has been successfully applied
to describe recombination processes for N > 3 [34, 40]. In this framework, the Hamiltonian
is diagonalized adiabatically as a function of the hyperradius R, which describes the overall
size of the system, leading to a set of coupled one-dimensional Schrödinger equations. At
ultralow temperatures and large scattering lengths, N -body recombination events are mainly
controlled by scattering processes with incoming flux in the lowest N -body scattering channel
and outgoing flux in deeper loss channels. The coupling to the deep channels is assumed to
remain approximately unaffected as the scattering length and the collision energy are varied
throughout our regime of interest. Thus, all the relevant information comes from the analysis of
the lowest N -body potential curve corresponding to the incoming scattering channel.

However, the extraction of the hyperspherical potential curves and couplings becomes
computationally unfeasible as the number of particles increases. Currently, the numerical
technology allows for the calculation of potential curves of three- and four-body systems but
no tractable method has yet been implemented that can calculate both the potential curves and
couplings for N > 4. However, the trapped energy eigenvalue spectrum of a five-body system
can be accurately obtained with current technology. Thus, the present study extracts the relevant
recombination information from an analysis of the trapped spectrum.

Our starting point is the hyperspherical description of the ultracold N -body recombination
rate [40],

L0+

N =

(
4π

k2

)(3N−5)/2 h̄N0(3N/2 − 3/2)

µN
(1 − |S0+

00 |
2), (1)

where µN = m/
N−1
√

N with m being the atomic mass, k = (2µN E/h̄2)1/2 is the incoming
hyperradial scattering wavenumber and S0+

00 is the diagonal element of the S-matrix for the
lowest channel (00) in the J 5

= 0+ symmetry. For purely elastic scattering |S0+

00 |
2
= 1 and

the recombination rate is zero. In the limit in which every N -body collision leads to losses,
|S0+

00 |
2
= 0. Taking the thermal average in the full loss case at a temperature T , one obtains the

unitary limit for N -body recombination at low energy:

〈L N 〉T = (2π)(3N−5)/2 N
kBT

h̄

(
h̄2

µN kBT

)3(N−1)/2

. (2)

Based on potential curves computed for the three- and four-body cases, we expect that the
five-body potential curve should have the topology depicted as a solid curve in figure 2, i.e.
the lowest potential curve exhibits a barrier that separates the inner region (small R) from the
asymptotic scattering region at large R. Note that the effective mock-centrifugal barrier [41] in
the lowest N -body continuum channel at large R is guaranteed to have the form (for finite a)
U (R) → h̄2(3N − 4)(3N − 6)/2µN R2. For this potential curve topology, an extension of
the semiclassical (Wentzel–Kramers–Brillouin–Jeffreys (WKBJ)) treatment of Berry [42] to
include the decay to the lowest channels yields [40]

(1 − |S00|
2) =

e−2γ

2

sinh(2η−)

cos2 φin + sinh2 η−

A(η−, γ, φin), (3)

where φin is the WKBJ phase for the inner allowed region, γ is the WKBJ tunneling integral in
the barrier region, η− describes the decay to deeper, non-universal, channels and is treated as a
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Figure 2. Schematic representation of the lowest five-body hyperspherical
potential curve. The solid curve represents the free-space hyperspherical
potential while dashed curves represent hyperspherical potential curves in the
presence of a harmonic potential. Solid lines represent the inner and outer
Wentzel–Kramers–Brillouin (WKB) phases. Inset: five-body trapped energy
spectrum in the region where the bound five-body state crosses the lowest trapped
states.

fitting parameter and A(η−, γ, φin) ensures the proper normalization. Thus, the determination of
γ and φin for the relevant range of energy and scattering length gives an approximate description
of five-body recombination.

The novelty of our approach is the determination of γ and φin from an analysis of
the trapped spectrum. The five-body trapped energy spectrum is obtained using a correlated
Gaussian basis set expansion [37]; for details see appendix A. In the region where the five-body
resonance occurs, the spectrum exhibits a series of avoided crossings between the five-body
states bound in the inner region and the outer trap region states (see figure 2). In the WKBJ
approximation, the quantization condition for the trapped potential curve (dashed curve in
figure 2) is 1

2 tan(φin) tan(φout) = 1, where 1 = e−2γ /2. For collision energies below the barrier
local maximum and away from the avoided crossings, the allowed energy eigenvalues occur
when φα(E, a) ≈ π(i + 1/2), where i is an integer and α = in, out. The phase φin in the four-
boson case near the resonance energy is known from our previous work [40] to be well described
by φin ≈ φin,0 + b(a/rvdW) + caE/(rvdW EvdW), where φin,0, b and c are fitting parameters and
rvdW and EvdW are the van der Waals radius and energy, respectively, as defined in [4]. Using
this simple form in the five-body case and imposing the eigenstate condition for bound states,
the values of φin,0, b and c for N = 5 are extracted.

Next, an analysis of the spectrum at the avoided crossings (see e.g. figure 2) determines
γ , as explained in detail in appendix B. The relevant avoided crossings occur when φin ≈

φout ≈ π(i + 1/2). For narrow avoided crossings (1 � 1), the quantization condition reduces to
δφin δφout ≈

1

2 where φα = π(i + 1/2) + δφα. Right at the avoided crossing, the energy difference
between the two states (21E) is related to 1, namely as δφα ≈ (dφα/dE)1E . The quantization
condition thus reduces to 1 ≈ 21E2(dφin/dE) (dφout/dE). Consequently, knowledge of φin,
φout and the energy avoided crossings allows the tunneling γ to be determined. At large R,
interactions can be treated perturbatively leading to a hyperspherical potential curve valid at
large R that determines φout.
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By changing the trapping confinement, we can change φout and by introducing short-range
three-body forces we can modify φin without affecting the barrier. This allows us to explore how
γ depends on both E and a. Interestingly, at low energies our numerical results are nicely fitted
by the formula e−2γ

∝ (E/EvdW)5
|a/rvdW|

9.6, which is in good agreement with the predicted
threshold behavior (1 − |S0+

00 |
2) ∝ E5

|a|
10 [40].

3. Experiment

We prepare an optically trapped sample of cesium atoms in the lowest sub-level of the electronic
ground state under similar conditions as described in [43]. The final evaporation process,
performed at a magnetic field of 894 G (a = +285 a0, where a0 is the Bohr radius), is stopped
before the onset of Bose–Einstein condensation. The sample is then adiabatically recompressed
to avoid further evaporation from the trap. At this point, the sample contains about 6 × 104 atoms
at a temperature T = 78(3) nK and the confining optical potential has a mean trap frequency
ω̄ = 2π × 36.2(2) Hz, which results in a peak number density of 4.2 µm−3 and a peak phase
space density close to unity. The wide s-wave Feshbach resonance with its pole at 786 G offers
ideal tuning properties [43, 44], superior to the low-field region investigated in our previous
works [8, 39].

We measured the decay of the atom number in the region of negative scattering length
(from −500 a0 at 863 G to −200 a0 at 873 G), where the four- and five-body recombination
resonances are expected. After the recompression stage, we tune the scattering length to its
target value, and we measure the atom number after a variable hold time by absorption imaging.
After 100 ms, the typical loss fraction is around 10% at −300 a0 and almost 35% at −450 a0.

The time evolution of the numberN of trapped atoms and temperature T are determined by
the different N -body loss processes and can be expressed [45] in terms of a system of coupled
differential equations,

Ṅ /N = −

+∞∑
N=1

L N 〈nN−1
〉, (4)

Ṫ /T =

+∞∑
N=1

εN L N 〈nN−1
〉, (5)

where L N represents the N -body rate coefficients. The averaged atom densities are evaluated as
〈nN−1

〉 =
∫

nN d3r =N N−1 N−3/2[(mω̄2)/(2πkBT )](3N−3)/2 from a thermal distribution of the
harmonically trapped atoms. Equation (5) incorporates the anti-evaporation heating [45] that
results from the higher recombination rate in the densest part of the cloud (2εN ≡ 1 − 1/N ).

Under our experimental conditions, the first two terms of the sums can be omitted.
One-body losses, resulting from collisions with the background gas, are negligible on our
experimental time scale (L1 = 0), and the use of atoms in their lowest sub-state ensures that two-
body losses vanish (L2 = 0). Therefore, the three-body rate coefficient L3 is the leading term
contributing to the atom losses, and its resonant behavior is related to the Efimov trimers. This
contribution is well understood and the coefficient L3 can be described by the well-established
result of effective field theory [46]. The rates of recombination events involving more particles
are generally smaller than the one related to three-body losses and the contributions are difficult
to discriminate because of the very similar behavior. Since the rate of recombination events
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Figure 3. Effective four- (a) and five-body recombination rates (b). The green
dashed curve and the blue solid line follow the theoretical model for L4 and L5,
respectively, with an additional scaling factor for L5; see text. The error bars
include the statistical uncertainties from the fitting routine, the temperature and
the trap frequencies.

for typical gas densities decreases rapidly with N , contributions with N > 5 are considered
negligible in the following.

A general fit to the experimental decay curves with L3, L4 and L5 as free parameters in
equations (4) and (5) turns out to be practically impossible. Therefore, we fix L3 according
to effective field theory, with parameters a− = −955 a0 and η− = 0.08 as determined for
three-body recombination (N = 3) in our previous experiment [43]. We can now interpret
the additional losses in terms of four-body and five-body decay. In order to avoid any fitting
ambiguities, we chose the simple approach to describe these losses in terms of either an effective
four-body loss coefficient L4,eff (setting L5 = 0) or an effective five-body loss coefficient L5,eff

(setting L4 = 0).
Figure 3(a) shows L4,eff as extracted from our experimental data in comparison with the

theoretical predictions, obtained by numerically evaluating L4 from equations (1) and (3) for our
experimental conditions. Here we have adjusted the decay parameter to η− = 0.33, which as a
non-universal parameter depends on N . The comparison shows that the losses observed around
−450 a0 can be fully attributed to the four-body recombination resonance. The four-body loss
peak position a4,− = −440(10) a0 corresponds to 0.46(1) a− and is in very good agreement with
the theoretical value 0.44(1) a− [34] and previous observations [12, 19, 20, 39]. In contrast, the
enhancement of losses centered at about −300 a0 cannot be interpreted in terms of the known
universal four-body cluster states9, suggesting that a different loss mechanism is present.

An alternative representation of the same data in terms of L5,eff is shown in figure 3(b),
together with the results of our theoretical model for L5; here we adjusted the relevant decay
parameter to η− = 0.20. The model nicely explains the loss rates in the region where three- and

9 We cannot rule out the possibility of a non-universal few-body state, which may be associated with higher partial
waves. However, such an accidental coincidence appears to be rather unlikely.
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Figure 4. Calculated and measured fraction of loss atoms from an atomic
sample of initially 5 × 104 atoms at a temperature of 80 nK after a hold time
of 100 ms. The red dotted line corresponds to the losses predicted for three-
body recombination only, while the dashed green line and the blue solid line
include also contributions from four- and five-body recombination, as quantified
in this work. A cutoff to the maximum losses has been applied according to
equation (2), as suggested in [47]. The inset shows a close-up of the region of
dominant four- and five-body recombination and compares the theoretical results
with the experimental observations.

four-body losses cannot account for the experimental observations. Remarkably, the resonance
position a5,− = 0.64(2) a4,− is in agreement with the theoretical predictions 0.65(1) a4,−

[36, 37]. However, quantitatively, the experimental values for L5 are about 15 times larger than
the calculated ones. To account for this, we introduce a corresponding scaling factor. We find
that this deviation might derive from non-universal effects that modify the value of the calculated
WKB phase γ by about 10%, which remains within the realistic uncertainty range of our theory.

An experimental search for higher-order recombination resonances (N > 5) that would
be expected at lower values of the scattering length did not show clear signatures. A general
problem arises, namely that the phase-space density cannot be further increased without
causing the collapse of a Bose–Einstein condensate at negative values of a. To induce faster
losses, adiabatic compression can increase the density, but then the higher temperatures cause
increasing problems with the unitarity limit for high N . By decreasing the temperature,
constraints by the unitarity limit can be avoided, but then losses for high N get so small that
they become practically unobservable.

Based on the above results and parameters, we model the general loss behavior in the
region of interest. Figure 4 shows an example for three-, four- and five-body recombination
by plotting the atom losses, under typical experimental conditions, for a fixed hold time
and variable scattering length. The ‘family portrait’ of N -body recombination highlights the
different contributions and confirms how the different loss features dominate the losses at the
resonant positions. The experimental data plotted in the inset show that the peak positions and
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the magnitude of losses are in very good agreement with the simulated losses. Note that the
somewhat higher experimental losses can be attributed to an additional loss that occurs during
the ramp to the target magnetic field strength.

4. Conclusion

By pushing the limits of ultracold few-body physics, we have explored a universal five-
body recombination resonance both experimentally and theoretically. The observed series of
recombination features, which we interpret in terms of three-, four- and five-body recombination
resonances, provides crucial evidence for the existence of a family of universal N -body bound
states tied to Efimov trimers. The infinite series of N -boson cluster states represents a paradigm
for the general implications of Efimov physics for many-body systems. We speculate that
similar scenarios also exist for other few-body systems of increasing size, containing fermionic
constituents or particles of different masses, with important consequences for the interaction
properties of the many-body system.
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Appendix A. Extraction of the trapped five-body spectrum

A crucial ingredient of our recombination analysis is the accurate extraction of the five-body
trapped spectrum. The trapped few-boson Hamiltonian is given by

H=

N∑
i=1

(
−

h̄2
∇

2
i

2m
+

mω2r 2
i

2

)
+

∑
i> j

V2b(ri j) +
∑

i> j>k

V3b(Ri jk), (A.1)

where ω is the trapping frequency, V2b(r) = V2b0 e−r2/(2r2
0 ) is the two-body potential and

V3b(R) = V3b0 e−R2/(2R2
0) is a three-body potential. Here, r0 and R0 are the ranges of the two-

and three-body potentials that are fixed during the calculation, and Ri jk =

√
(r 2

i j + r 2
ik + r 2

jk)/3.

The two-body potential strength V2b0 is used to tune the two-body scattering length and V3b is
set to zero in most calculations (see the discussion below). To relate the model potential with
the experimental, we rely on the universal character of the low-energy few-boson physics and
we relate r0 with the van der Waals length rvdw so that the three- and four-body recombination
peaks coincide with those experimentally observed. In this transformation, we relate the energy
scales so that they scale as inverse length squared.

To extract the recombination parameters, the five-body spectrum is analyzed as a function
of the scattering length and the trapping confinement. The scattering length is changed in the
region −4r0 < a < 0 and the trapping frequency is changed so that the corresponding trapping
length aho =

√
h̄/(mω) varies in the range 5r0 < aho 6 100r0. This region of scattering lengths

and energies corresponds to the low-energy region where the five-body resonance occurs.
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Figure A.1. (a) The lowest two eigenenergies of a trapped five-body system are
shown as functions of the scattering length for different trapping frequencies.
Different colors represent different trapping frequencies. The combination of
these states essentially describes the energy of the five-body state in the inner
region of the potential Emol(a) (the diagonal curve). Here Esr = h̄2/(mr 2

0 ) and r0

is the characteristic range of the two-body model potential that can be tuned to
obtain the five-body resonance (i.e. r0 ∼ 1.7rvdw where rvdw is the van der Waals
length). (b) The near-threshold behavior of 1. The fitting of the lowest energy
points leads to 1 ∝ AEb. The lowest three points lead to b ≈ 5.004, as expected
from the known threshold behavior [40].

The three-body interaction is used to shift the position of the five-body resonance and
explores the dependence of the recombination on the scattering length. The range of the three-
body potential is taken to be R0, which is smaller than the two-body r0 so that it is mainly
relevant at small hyperradii, i.e. so that its main contribution in our recombination formula is
to change the inner phase. For the three-body interactions considered, the spectrum follows the
linear dependence with the scattering length that is expected at small and negative scattering
lengths. This linear dependence arises from only two-body physics which, in the hyperspherical
framework, is described by the long-range behavior of the potential curves. Using the zero-range
model of the two-body interaction, one can derive a first-order correction of the hyperspherical
potential curve. Here, we follow a similar procedure to that in [48], but for a set of coordinates
in which the center of mass has been removed. In this approximation, the lowest potential takes
the form

V (R) =
3(N − 2)(3N − 4)h̄2

8µN R2
+

µNω2 R2

2
+

h̄2a(N − 1)N
2N−1
2N−2 0

(
3
2 N −

3
2

)
√

2πµN R30
(

3
2 N − 3

) . (A.2)

The first two terms correspond, respectively, to the hyperangular or ‘mock-centrifugal’ kinetic
energy and the trapping potential; and the third term represents the interaction corrections.
Equation (A.2) is only valid for small |a| in the region where R is much larger than the
interaction range. Using perturbation analysis, one derives the well-known corrected energy
of the lowest state,

E ≈ 3(N − 1)
h̄ω

2
+

√
2

π

a

aho
h̄ω

N (N − 1)

2
. (A.3)
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Our numerical calculations, with and without the three-body forces, show the linear behavior
described in equation (A.3) in the region |a| < |a5,−|. This suggests that the hyperradial
potential in R � r0 is well described by equation (A.2) and that, in this region, the potential
is independent of the three-body forces. Thus, it is consistent to interpret the main contribution
of the three-body interaction as a modification of the short-range physics that controls φin.

The calculations are carried out using a correlated Gaussian basis set expansion limited
to describing LP

= 0+ trapped states since the energetically lowest scattering continuum
corresponds to zero angular momentum and positive parity. In this computation, we are only
interested in the lowest trapped states which, in the hyperspherical picture, are supported
mainly by the lowest potential curve. Therefore, the basis set is designed to accurately describe
those states. The calculations include thousands of basis functions that are optimized for
different scattering lengths and trap lengths. To verify the convergence of the energies, we
carry out several optimization steps. The typical spectrum obtained by this analysis is shown
in figure A.1(a).

Appendix B. Semiclassical analysis of the trapped spectrum

To extract the semiclassical recombination parameters, we repeat the same semiclassical
analysis used to derive equations (2) and (3) but for a hyperspherical potential with the trapping
potential (see figure 2). This basically amounts to solving a double-well problem using a
semiclassical analysis. For this analysis, we follow closely the prescription in [42] to determine
the quantization condition

β = − tan−1

(
1

4
e−2γ tan(φin)

)
− φout +

π

2
= nπ, (B.1)

where φin is the phase in the inner region, γ is the barrier phase and φout is the phase in the
external trapped region (see figure 2). The semiclassical phases are

φin =

∫
innerwell

q(R) dR, (B.2)

γ (E, a) = Im
∫

barrier
q(R) dR, (B.3)

φout =

∫
trapwell

q(R) dR, (B.4)

where q(R) =
√

2µ[E − V (R)] and V (R) is the hyperspherical curve with the Langer
correction. Here, the different integration regions are bounded by the classical turning points,
i.e. the R positions at which q(R) = 0. In our analysis, φ and γ are assumed to be unaffected
by the trapping potential which is expected to be negligible at small hyperradii.

After some mathematical manipulation, the quantization condition can be written as

1

tan(φin) tan(φout)
=

1

2
, (B.5)

where 1 = e−2γ /2. For tunneling energies well below the barrier height, 1 � 1 which implies
that the quantization condition is fulfilled when either φin ≈ π(iin + 1/2) or φout ≈ π(iout + 1/2).
These conditions (φin ≈ π(iin + 1/2) and φout ≈ π(iout + 1/2)) can be interpreted as having a

New Journal of Physics 15 (2013) 043040 (http://www.njp.org/)

http://www.njp.org/


12

bound state either in the inner or outer region. We call Ein(a) and Eout(a) the energies at
which φin = π(iin + 1/2) and φout = π(iout + 1/2), respectively. Here iα are integers representing
the number of bound states supported by the inner and outer well, respectively. Thus, close
to those energies, the inner and outer phases take the form φα = π(iα + 1/2) + φ′

α(E − Eα(a))

where φ′

α ≡ dφα/dE . In the vicinity of the avoided crossings, the quantization condition can be
approximated to

(Ein(a) − E)(Eout(a) − E) −
1

2φ′

inφ
′
out

≈ 0. (B.6)

Equation (B.6) resembles a determinant of a 2 × 2 Hamiltonian matrix which lends itself
to the following physical interpretation. The states supported by the inner and outer regions
are coupled to each other and the coupling energy Vin,out is related to the tunneling through the
barrier by V 2

in,out =
1

2φ′

inφ
′
out

. The eigenenergies of this double-well problem (E1 and E2) reach
their squared minimal difference at the avoided crossing, equal to

(E2 − E1)
2
= 21/(φ′

inφ
′

out). (B.7)

To verify the validity of this equation, the energy dependence of 1 is explored by varying
the strength of the trapping potential. According to the threshold laws [40], for a five-boson
problem, 1 increases with energy as 1 ∝ E5. Figure A.1(b) confirms that the scaling of 1

calculated through the avoided crossing analysis shows excellent agreement with the threshold
law prediction.
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[43] Berninger M, Zenesini A, Huang B, Harm W, Nägerl H C, Ferlaino F, Grimm R, Julienne P S and

Hutson J M 2011 Phys. Rev. Lett. 107 120401
[44] Berninger M, Zenesini A, Huang B, Harm W, Nägerl H-C, Ferlaino F, Grimm R, Julienne P S and
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