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Formulas for the cross section and event rate constant describing recombination of N particles are

derived in terms of general S-matrix elements. Our result immediately yields the generalized Wigner

threshold scaling for the recombination of N bosons. A semianalytical formula encapsulates the overall

scaling with energy and scattering length, as well as resonant modifications by the presence of N-body

states near the threshold collision energy in the entrance channel. We then apply our model to the case of

four-boson recombination into an Efimov trimer and a free atom.

DOI: 10.1103/PhysRevLett.103.153201 PACS numbers: 34.50.Cx

Few-body processes have played an increasingly crucial
role in the physics of strongly interacting quantum gases.
Three-body recombination in particular [1] contributes
strongly to atom loss and is primarily responsible for
controlling the lifetime of Bose-Einstein condensates
(BEC) because the kinetic energy released in the reaction
is usually sufficient to eject the collision partners from the
trapping potential [2]. At ultracold temperatures, the phys-
ics of three-body recombination is largely controlled by the
effective long-range potential in the entrance (three-body)
channel. Hence, a threshold analysis of these potentials
immediately yields information about the scaling behavior
of the event rate constant K3 with respect to both the
energy E and the (s-wave) scattering length a. For in-
stance, a threshold analysis shows that K3 scales as a4

and E0 for bosons [1], making three-body recombination
an important process in the ultracold limit. In contrast, the
long-lived nature of the ultracold polarized Fermi gas is
explained by the E2 scaling of K3 near threshold [3].
Further, the presence of Efimov states [4] near the thresh-
old collision energy resonantly enhances recombination
[1]. This resonant feature was exploited to confirm the
existence of Efimov states in experiments with ultracold
cesium [5]. The increasing number of experiments observ-
ing Efimov physics [6] highlights the importance of few-
body physics in our understanding of strongly interacting
quantum gases.

The natural extension of three-body recombination is to
four bodies. Considerable progress has in fact been made
towards the calculation of four-body processes, notably
collision cross sections involving two-body fragmentation
channels [7] and bound-state energies [8]. Scattering pro-
cesses involving four or more free atoms are far more
complex and require a deep analysis of the multiparticle
continua [9,10]. Nevertheless, recent studies have pro-
posed four-body recombination as an efficient process for
the production of Efimov trimers [9,10]. Four-boson bor-
romean states (four-body bound states with no bound sub-

systems) with universal properties tied to Efimov physics
were recently predicted [11], further explored [10], and
measured by the Innsbruck group [12] in atom loss due to
recombination. The present analysis is concerned with the
recombination of N particles into a channel with N � 1
particles bound together and one free.
We use hyperspherical coordinates (see [13,14] for use-

ful reviews), in which Jacobi vectors ~�i are transformed to
a set of angular coordinates collectively denoted �, plus a
radial coordinate called the hyperradius R defined by

�NR
2 ¼ PN�1

i¼1 �i�
2
i , where �N ¼ ½ðQimiÞ=M�1=ðN�1Þ is

the N-body reduced mass, M ¼ P
imi is the total mass of

the system and �i is the reduced mass associated with the
ith Jacobi vector. At large R, the solutions to the angular
portion of the Schrödinger equation yield the fragmenta-
tion channels of the N-body system, and the quantum
numbers labeling those solutions index the S matrix.
Derivation of the generalized cross section.—This for-

mulation begins by considering scattering by a purely
hyperradial potential in d dimensions, and then obtains
the generalized cross section ‘‘by inspection.’’ For clarity,
we adopt a notation that resembles the usual derivation in
three dimensions.
In d dimensions, the wave function at large R behaves as

�I ! ei
~k� ~R þ fðk̂; k̂0Þ eikR

Rðd�1Þ=2 : (1)

Equivalently, an expansion in hyperspherical harmonics is
written in terms of unknown coefficients A��:

�II¼X
�;�

A��Y��ðR̂Þ½jd�ðkRÞcos���nd�ðkRÞsin���: (2)

Here, Y�� are hyperspherical harmonics (solutions to the

free-space angular equation ½�2 � �ð�þ d� 2Þ�Y�� ¼
0, where �2 is the grand angular momentum operator
[14]) and jd� (nd�) are hyperspherical Bessel (Neumann)
functions [14].
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Identification of the incoming wave parts of �I and�II

yields the coefficients A��, whose insertion into Eq. (2)

gives

fðk̂; k̂0Þ ¼
�
2�

k

�ðd�1=2ÞX
��

i�e�iðd=2�1þ�Þ�=2�i�=4Y�
��ðk̂Þ

� Y��ðk̂0Þðe2i�� � 1Þ: (3)

The immediate generalization of this elastic scattering
amplitude to an anisotropic short-range potential is

fðk̂; k̂0Þ ¼
�
2�

k

�ðd�1=2Þ X
���0�0

i�e�i��Y�
��ðk̂ÞY�0�0 ðk̂0Þ

� ðS��;�0�0 � ���0���0 Þ; (4)

where �� ¼ ðd=2� 1þ �Þ�=2þ �=4. Upon integrating

jfðk̂; k̂0Þj2 over all final hyperangles k̂, and averaging over

all initial hyperangles k̂0 as would be appropriate to a gas
phase experiment, we obtain the average integrated elastic
scattering cross section by a short-range potential:

�dist ¼
�
2�

k

�
d�1 1

�ðdÞ
X

���0�0
jS��;�0�0 � ���0���0 j2; (5)

where �ðdÞ ¼ 2�d=2=�ðd=2Þ is the total solid angle in
d dimensions [14]. This last expression is immediately
interpreted as the generalized average cross section result-
ing from a scattering event that takes an initial channel into
a final channel, i � �0�0 ! �� � f. Since this Smatrix is
manifestly unitary in this representation, it immediately
applies to inelastic collisions as well, including N-body
recombination. It is worth noting that the sum in Eq. (5)
should include degeneracies, and that the cross section
should be appropriately averaged over initial spin substates
and collision energies.

In this form, we can interpret the generalized cross sec-
tion derived above in terms of the unitary S-matrix com-
puted by solving the exact coupled-channels reformulation
of the few-body problem within the adiabatic hyperspheri-
cal representation [15]. In principle this can describe colli-
sions of an arbitrary number of particles. Identical particle
symmetry is handled by summing over all indistinguish-
able amplitudes before taking the square, averaging over
incident directions and momenta for a given energy, fol-
lowed by integrating over distinguishable final states to
obtain the total cross section: �indist ¼ Np�

dist. Here Np is

the number of terms in the permutation symmetry projec-
tion operator (e.g., for N identical particles, Np ¼ N!).

The cross section for total angular momentum J and
parity � includes an explicit 2J þ 1 degeneracy. Hence,
the total generalized cross section (with dimensions of
lengthd�1) for N particles in all incoming channels i to
scatter into the final state f, properly normalized for iden-
tical particle symmetry, is given in terms of general
S-matrix elements as

�indist
fi ðJ�Þ ¼ Np

�
2�

ki

�
d�1 1

�ðdÞ
X
i

ð2J þ 1ÞjSJ�fi � �fij2:

(6)

The event rate constant [recombination probability per
second for each distinguishable N group within a

ðunit volumeÞðN�1Þ] is the generalized cross section
Eq. (6) multiplied by a factor of the N-body hyperradial
‘‘velocity’’ (including factors of @ to explicitly show the
units of KN):

KJ�

N ¼ @ki
�N

�indist
fi ðJ�Þ: (7)

Treatment of N bosons.—The structure of a relevant
S-matrix element from an adiabatic hyperspherical view-

point is seen to be SJ
�

fi ¼ h�J�

f ðR;�ÞFfðRÞjŜj �
�J�

i ðR;�ÞFiðRÞi, where �J�

i and �J�

f are the channel

functions (i.e., solutions to the hyperangular part of the
Schrödinger equation in the limit R ! 1) for the entrance
and final channel, respectively. For all N-body entrance
channels we have i ! �, where � is the hyperangular
momentum quantum number associated with eigenfunc-
tion Y��. The functions Fi and Ff are the large R solutions

to the coupled hyperradial equations obtained in the adia-
batic hyperspherical representation [15] (in units where
@ ¼ 1):

� �1

2�N

@2

@R2
þWiðRÞ � E

�
Fi þ

X
f�i

VifðRÞFf ¼ 0: (8)

Asymptotically (as R ! 1) the couplings VifðRÞ vanish
and the effective potentials in the N-body continuum
channels are expressed in terms of an effective angular
momentum quantum number le:

W�ðRÞ ! leðle þ 1Þ
2�NR

2
with le ¼ ð2�þ d� 3Þ=2: (9)

Near threshold, the recombination cross section is con-
trolled by the lowest N-body entrance channel i ¼ � !
�min ¼ 0. For N identical bosons in a thermal (non-
quantum-degenerate) gas cloud, the dominant contribution
to Eq. (6) is from J� ¼ 0þ. Further, unitarity of the
S matrix allows us to write the total rate constant summed
over all final channels (using d ¼ 3N � 3) as

K0þ
N ¼ 2�@N!

�N

ð2�=kÞð3N�5Þ

�ð3N � 3Þ ð1� jS0þ00 j2Þ: (10)

Based on prior hyperspherical treatments for three [16]
and four [10] bosons, in cases where one or more ðN �
1Þ-body state is bound with no bound states of fewer
particles, we expect the hyperradial potentials to schemati-
cally look like those sketched in Fig. 1. Monte Carlo
calculations [17] of N-boson systems provide evidence of
superborromean states which could produce the topology
shown in Fig. 1. For four bosons, potentials with the
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topology shown occur at negative scattering lengths
(a < 0).

The semiclassical (WKBJ) treatment of Berry [18] can
be generalized, giving a complex phase shift �le for colli-

sions of N identical bosons. The phase shift is acquired in
terms of the phase � accumulated in the classically al-
lowed region (R3 < R< R2), and the tunneling integral 	
in the classically forbidden regions:

� ¼
Z R2

R3

qðRÞdR; and 	 ¼ Im
Z ð3N�5Þ=2k

R�
qðRÞdR;

(11)

where qðRÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�N½E�W 0ðRÞ�p

(W 0 is the effective po-
tential including the Langer correction [19]), and R� is the
hyperradius at which the inelastic coupling to the exit
channel peaks [typically at hyperradii much greater than
the range of the two-body interaction r0; i.e., r0 � R� &
R3 for recombination into a universal ðN � 1Þ-body state].

The inelastic amplitude is incorporated into the phase by
letting � ! �þ i� [20]. Applying the connection formu-
las for each of the classical turning points R1, R2, and R3

shown in Fig. 1 gives the phase shift:

�le ¼ �ð0Þ
le

� arctan½14e�2	 cotð�þ i�� �=2Þ�: (12)

Here, �ð0Þ
le is the real semiclassical phase shift derived by

ignoring the interior region, which does not contribute to
the inelastic probability. The S-matrix element describing
scattering from oneN-boson state to another is then simply
S00 ¼ e2i�le , and the total probability to recombine into all
available final channels is

1� jS00j2 ¼ e�2	

2

sinhð2�Þ
cos2�þ sinh2�

Að�; 	;�Þ; (13)

where the function Að�;	;�Þ:

Að�; 	;�Þ ¼
��������1þ

e�2	

4
tanhð�þ i�Þ

��������
�2

(14)

is equal to unity in the threshold limit unless both � ! 0
and � ! �=2.

The threshold energy dependence of K0þ
N is found by

breaking 	 into two pieces corresponding to the regions
shown in Fig. 1:

	II¼
Z ð3N�5Þ=2k


jaj
jqðRÞjdR; 	I¼ Im

Z 
jaj

R�
qðRÞdR: (15)

For recombination into a universal ðN � 1Þ-body bound
state, we expect R� � r0, in which case 	, �, and � are
also universal. A simple calculation shows e�2	II ¼
½2k
jaj=ð3N � 5Þ�3N�5. It is convenient to introduce an


-independent function CðaÞ ¼ CN

ð3N�5Þe�2	I . The con-

stant CN must be adjusted to give the correct overall scale

of K0þ
N . The full N-boson recombination rate constant in

the ultracold limit is then

K0þ
N ¼ �@N!

�N�ð3N � 3Þ
�
4�jaj
3N � 5

�
3N�5 CðaÞ sinhð2�Þ

cos2�þ sinh2�
:

(16)

Note that this is a quantitative result valid in the threshold
regime. It is a constant (independent of k), and scales
roughly as jaj3N�5 (in agreement with [21]). Hence,
N-body processes could contribute to the total atom loss
at higher particle density n through terms of the form

�KNn
N: dn

dt ¼
PNmax

N¼2 �LNn
N, where the atom-loss rate

LN is related to the event rate by LN ¼ KN=ðN � 1Þ!
provided each recombination event ejects N atoms from
the trapped gas. (Recall also that for a quantum-degenerate
Bose gas, the above expressions for KN must be divided
by N! [22].) For N ¼ 3, Eq. (16) is consistent with the
expression found by Braaten and Hammer [20] and the

FIG. 1 (color online). A schematic representation of the
N-boson hyperradial potential curves is shown. When a meta-
stable N-boson state crosses the collision energy threshold at
E ¼ 0, N-body recombination into a lower channel with N � 1
atoms bound plus one free atom is resonantly enhanced.

FIG. 2 (color online). The four-boson recombination rate con-
stant K0þ

4 is shown over approximately one range of the discrete

scaling factor e�=s0 [10]. The dots are obtained by numerically
solving the coupled hyperradial equations, while the solid green
curve is obtained from Eq. (16) with N ¼ 4, � ¼ 0:01, and C4 ¼
55. The dashed red curve is a calculation using Eq. (16), but
ignoring the additional suppression due to 	I. The inset shows
the universal phases � and 	I used in Eq. (16). While 	I is
shown here for 
 ¼ 10, results for K0þ

4 are independent of 
 (see

text).
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phase � acquires the universal log-periodicity character-
istic of Efimov physics [4].

Recombination of four bosons with a < 0.—Now we
specialize our results to the case of four identical bosons

(d ¼ 9, J ¼ 0, Np ¼ 4!, and no degeneracy). Using nu-

merical hyperradial potential curves for four bosons inter-
acting via a short-range model potential [10], we obtain

K0þ
4 both by solving the coupled channels numerically and

by using Eq. (16) specialized to N ¼ 4. In Fig. 2, we show

K0þ
4 on an absolute scale ½cm9=s� (where we use parame-

ters appropriate for 133Cs: m ¼ 244 188 a:u: and r0 ¼
100 a:u:), and in model units of ½@r70=�4�. The horizontal

axis is shown in units of r0 and in units of the universal

‘‘three-body parameter’’ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjEð2Þ

3Bj
q

=@, where Eð2Þ
3B is the

bound-state energy of the second Efimov trimer at unitar-

ity. The overall magnitude of K0þ
4 is governed by �a=r0,

while the position of the peaks is fixed with respect to
��a. However, because � and r0 are related by a non-
universal factor, the relationship between the two horizon-
tal axes in Fig. 2 is model dependent. These results show
good agreement between the two calculations demonstrat-
ing the validity of the WKBJ approximation. The results
show the overall jaj7 scaling modified by resonant peaks at

�jaj 	 0:65 and �jaj 	 1:36: (17)

A cusp in K4 appears at �jaj 	 1:51 [23] when a new
atom-trimer channel appears (i.e., a new Efimov state
becomes bound), whereas peaks appear when a four-boson
state sits at the threshold of the entrance channel.

As was recently noted [10], two four-boson states are
bound at slightly less negative values of a than the values
of a at which an Efimov trimer becomes bound. In the
potentials of Fig. 1 for N ¼ 4, the entrance channel is
capable of supporting four-boson bound states, but the
second trimer-atom channel is not yet available. Because
inelastic transitions occur at hyperradii of order the size of
the lowest Efimov trimer, C, �, and � are universal func-
tions of a. We assume � is independent of a, and use � ¼
0:01 and C4 ¼ 55 in Fig. 2. For larger values of jaj, the
universal structure of Fig. 2 repeats with the three-boson

scale factor e�=s0 	 22:7 [10]. The Innsbruck group has
recently observed this universal connection between
Efimov states and four-boson states and confirmed the
spacing implied by Eq. (17), and the observed atom-loss
rates are consistent with the absolute scale in Fig. 2 [12].

In conclusion, we have derived a general formula for the
event rate constant for N-body recombination. The gener-
alized Wigner threshold scaling laws immediately follow,
and the overall scaling is resonantly modified by the pres-
ence of metastable N-body states near threshold. We then
specialize to four bosons with a < 0.
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