1,194 research outputs found

    Glomerular heparan sulfate alterations: Mechanisms and relevance for proteinuria

    Get PDF
    Glomerular heparan sulfate alterations: Mechanisms and relevance for proteinuria. Heparan sulfate (HS) is the anionic polysaccharide side chain of HS proteoglycans (HSPGs) present in basement membranes, in extracellular matrix, and on cell surfaces. Recently, agrin was identified as a major HSPG present in the glomerular basement membrane (GBM). An increased permeability of the GBM for proteins after digestion of HS by heparitinase or after antibody binding to HS demonstrated the importance of HS for the permselective properties of the GBM. With recently developed antibodies directed against the GBM HSPG (agrin) core protein and the HS side chain, we demonstrated a decrease in HS staining in the GBM in different human proteinuric glomerulopathies, such as systemic lupus erythematosus (SLE), minimal change disease, membranous glomerulonephritis, and diabetic nephropathy, whereas the staining of the agrin core protein remained unaltered. This suggested changes in the HS side chains of HSPG in proteinuric glomerular diseases. To gain more insight into the mechanisms responsible for this observation, we studied GBM HS(PG) expression in experimental models of proteinuria. Similar HS changes were found in murine lupus nephritis, adriamycin nephropathy, and active Heymann nephritis. In these models, an inverse correlation was found between HS staining in the GBM and proteinuria. From these investigations, four new and different mechanisms have emerged. First, in lupus nephritis, HS was found to be masked by nucleosomes complexed to antinuclear autoantibodies. This masking was due to the binding of cationic moieties on the N-terminal parts of the core histones to anionic determinants in HS. Second, in adriamycin nephropathy, glomerular HS was depolymerized by reactive oxygen species (ROS), mainly hydroxyl radicals, which could be prevented by scavengers both in vitro (exposure of HS to ROS) and in vivo. Third, in vivo renal perfusion of purified elastase led to a decrease of HS in the GBM caused by proteolytic cleavage of the agrin core protein near the attachment sites of HS by the HS-bound enzyme. Fourth, in streptozotocin-induced diabetic nephropathy and during culture of glomerular cells under high glucose conditions, evidence was obtained that hyperglycemia led to a down-regulation of HS synthesis, accompanied by a reduction in the degree of HS sulfation

    Schrodinger-Newton equation as a possible generator of quantum state reduction

    Get PDF
    It has been suggested by Diosi and Penrose that the occurrence of quantum state reduction in macroscopic objects is related to a manifestation of gravitational effects in quantum mechanics. Although within Penrose's framework the dynamics of the quantum state reduction is not prescribed, it was suggested that the so called Schrodinger-Newton equation can be used to at least identify the resulting classical end states. Here we analyze the extent to which the Schrodinger-Newton equation can be used as a model to generate a full, time dependent description of the quantum state reduction process. We find that when supplied with an imaginary gravitational potential, the Schrodinger-Newton equation offers a rationalisation for some of the hitherto unexplained characteristics of quantum state reduction. The description remains incomplete however, because it is unclear how to fully recover Born's rule.Comment: 7 pages, 7 figures; added reference

    A Fourier optics approach to evaluate the astrometric performance of MICADO

    Get PDF
    We present our investigation into the impact of wavefront errors on high accuracy astrometry using Fourier Optics. MICADO, the upcoming near-IR imaging instrument for the Extremely Large Telescope, will offer capabilities for relative astrometry with an accuracy of 50 micro arcseconds ({\mu}as). Due to the large size of the point spread function (PSF) compared to the astrometric requirement, the detailed shape and position of the PSF on the detector must be well understood. Furthermore, because the atmospheric dispersion corrector of MICADO is a moving component within an otherwise mostly static instrument, it might not be sufficient to perform a simple pre-observation calibration. Therefore, we have built a Fourier Optics framework, allowing us to evaluate the small changes in the centroid position of the PSF as a function of wavefront error. For a complete evaluation, we model both the low order surface form errors, using Zernike polynomials, and the mid- and high-spatial frequencies, using Power Spectral Density analysis. The described work will then make it possible, performing full diffractive beam propagation, to assess the expected astrometric performance of MICADO.Comment: 13 pages, 13 figures, to be submitted to the SPIE Astronomical Telescopes & Instrumentation 2020 conferenc

    Initial properdin binding contributes to alternative pathway activation at the surface of viable and necrotic cells

    Get PDF
    Properdin, the only known positive regulator of the complement system, stabilizes the C3 convertase, thereby increasing its half-life. In contrast to most other complement factors, properdin is mainly produced extrahepatically by myeloid cells. Recent data suggest a role for properdin as a pattern recognition molecule. Here, we confirmed previous findings of properdin binding to different necrotic cells including Jurkat T cells. Binding can occur independent of C3, as demonstrated by HAP-1 C3 KO cells, excluding a role for endogenous C3. In view of the cellular source of properdin, interaction with myeloid cells was examined. Properdin bound to the surface of viable monocyte-derived pro- and anti-inflammatory macrophages, but not to DCs. Binding was demonstrated for purified properdin as well as fractionated P2, P3, and P4 properdin oligomers. Binding contributed to local complement activation as determined by C3 and C5b-9 deposition on the cell surfaces and seems a prerequisite for alternative pathway activation. Interaction of properdin with cell surfaces could be inhibited with the tick protein Salp20 and by different polysaccharides, depending on sulfation and chain length. These data identify properdin as a factor interacting with different cell surfaces, being either dead or alive, contributing to the local stimulation of complement activation.</p

    High blood pressure in the hospital:intensify medication or ignore?

    Get PDF
    Item does not contain fulltextHigh blood pressure is a common finding in hospitalized patients. Anxiety, pain and fever can all increase blood pressure to various degrees. The question is whether this adaptive response is harmful and should lead to initiation or intensification of treatment or can be ignored. A recent retrospective study has shown that intensification of blood pressure lowering medication in patients who are hospitalized with non-cardiac conditions is associated with a higher incidence of in-hospital complications, in particular myocardial infarction and renal insufficiency, while another study demonstrated that patients who are discharged from hospital with intensified antihypertensive treatment have an increased risk of readmission without a reduction in cardiac events after one year. Although retrospective in nature, these data show that we should be careful with anti-hypertensive medication in patients hospitalized for non-cardiac conditions and that blood pressure monitoring should be focused on the identification of low rather than high blood pressure values

    Insights Into Enhanced Complement Activation by Structures of Properdin and Its Complex With the C-Terminal Domain of C3b

    Get PDF
    Properdin enhances complement-mediated opsonization of targeted cells and particles for immune clearance. Properdin occurs as dimers, trimers and tetramers in human plasma, which recognize C3b-deposited surfaces, promote formation, and prolong the lifetime of C3bBb-enzyme complexes that convert C3 into C3b, thereby enhancing the complement-amplification loop. Here, we report crystal structures of monomerized properdin, which was produced by co-expression of separate N- and C-terminal constructs that yielded monomer-sized properdin complexes that stabilized C3bBb. Consistent with previous low-resolution X-ray and EM data, the crystal structures revealed ring-shaped arrangements that are formed by interactions between thrombospondin type-I repeat (TSR) domains 4 and 6 of one protomer interacting with the N-terminal domain (which adopts a short transforming-growth factor B binding protein-like fold) and domain TSR1 of a second protomer, respectively. Next, a structure of monomerized properdin in complex with the C-terminal domain of C3b showed that properdin-domain TSR5 binds along the C-terminal a-helix of C3b, while two loops, one from domain TSR5 and one from TSR6, extend and fold around the C3b C-terminus like stirrups. This suggests a mechanistic model in which these TSR5 and TSR6 "stirrups" bridge interactions between C3b and factor B or its fragment Bb, and thereby enhance formation of C3bB pro-convertases and stabilize C3bBb convertases. In addition, properdin TSR6 would sterically block binding of the protease factor I to C3b, thus limiting C3b proteolytic degradation. The presence of a valine instead of a third tryptophan in the canonical Trp-ladder of TSR domains in TSR4 allows a remarkable ca. 60 degrees-domain bending motion of TSR4. Together with variable positioning of TSR2 and, putatively, TSR3, this explains the conformational flexibility required for properdin to form dimers, trimers, and tetramers. In conclusion, the results indicate that binding avidity of oligomeric properdin is needed to distinguish surface-deposited C3b molecules from soluble C3b or C3 and suggest that properdin-mediated interactions bridging C3b-B and C3b-Bb enhance affinity, thus promoting convertase formation and stabilization. These mechanisms explain the enhancement of complement-mediated opsonization of targeted cells and particle for immune clearance

    Clinical characterization of 66 patients with congenital retinal disease due to the deep-intronic c.2991+1655A>G mutation in CEP290

    Get PDF
    Purpose: To describe the phenotypic spectrum of retinal disease caused by the c.2991+1655A>G mutation in CEP290 and to compare disease severity between homozygous and compound heterozygous patients. Methods: Medical records were reviewed for best-corrected visual acuity (BCVA), age of onset, fundoscopy descriptions. Foveal outer nuclear layer (ONL) and ellipsoid zone (EZ) presence was assessed using spectral-domain optical coherence tomography (SD-OCT). Differences between compound heterozygous and homozygous patients were analyzed based on visual performance and visual development. Results: A total of 66 patients were included. The majority of patients had either light perception or no light perception. In the remaining group of 14 patients, median BCVA was 20/195 Snellen (0.99 LogMAR; range 0.12-1.90) for the right eye, and 20/148 Snellen (0.87 LogMAR; range 0.22-1.90) for the left. Homozygous patients tended to be more likely to develop light perception compared to more severely affected compound heterozygous patients (P = 0.080) and are more likely to improve from no light perception to light perception (P = 0.022) before the age of 6 years. OCT data were available in 12 patients, 11 of whom had retained foveal ONL and EZ integrity up to 48 years (median 23 years) of age. Conclusions: Homozygous patients seem less severely affected compared to their compound-heterozygous peers. Improvement of visual function may occur in the early years of life, suggesting a time window for therapeutic intervention up to the approximate age of 17 years. This period may be extended by an intact foveal ONL and EZ on OCT
    corecore