329 research outputs found

    de-Sitter vacua via consistent D-terms

    Get PDF
    We introduce a new mechanism for producing locally stable de-Sitter or Minkowski vacua, with spontaneously broken N=1 supersymmetry and no massless scalars, applicable to superstring and M-theory compactifications with fluxes. We illustrate the mechanism with a simple N=1 supergravity model that provides parametric control on the sign and the size of the vacuum energy. The crucial ingredient is a gauged U(1) that involves both an axionic shift and an R-symmetry, and severely constrains the F- and D-term contributions to the potential.Comment: 4 pages, 1 figure, v3: published versio

    Minimal Z' models: present bounds and early LHC reach

    Get PDF
    We consider `minimal' Z' models, whose phenomenology is controlled by only three parameters beyond the Standard Model ones: the Z' mass and two effective coupling constants. They encompass many popular models motivated by grand unification, as well as many arising in other theoretical contexts. This parameterization takes also into account both mass and kinetic mixing effects, which we show to be sizable in some cases. After discussing the interplay between the bounds from electroweak precision tests and recent direct searches at the Tevatron, we extend our analysis to estimate the early LHC discovery potential. We consider a center-of-mass energy from 7 towards 10 TeV and an integrated luminosity from 50 to several hundred pb^-1, taking all existing bounds into account. We find that the LHC will start exploring virgin land in parameter space for M_Z' around 700 GeV, with lower masses still excluded by the Tevatron and higher masses still excluded by electroweak precision tests. Increasing the energy up to 10 TeV, the LHC will start probing a wider range of Z' masses and couplings, although several hundred pb^-1 will be needed to explore the regions of couplings favored by grand unification and to overcome the Tevatron bounds in the mass region around 250 GeV.Comment: 25 pages. v2: small improvements and minor corrections, version accepted for publication on JHE

    Brane-induced supersymmetry breaking

    Full text link
    We study spontaneous supersymmetry breaking induced by brane-localized dynamics in five-dimensional supergravity compactified on S^1/Z_2. We consider a model with gravity in the bulk and matter localized on tensionless branes at the orbifold fixed points. We assume that the brane dynamics give rise to effective brane superpotentials that trigger the supersymmetry breaking. We analyze in detail the super-Higgs effect. We compute the full spectrum and show that the symmetry breaking is spontaneous but nonlocal in the fifth dimension. We demonstrate that the model can be interpreted as a new, non-trivial implementation of a coordinate-dependent Scherk-Schwarz compactification.Comment: 15 pages. v2: improved treatment of brane actions, relation with conventional Scherk-Schwarz mechanism clarified, version to be published in JHE

    Production of J/psi Mesons at HERA

    Full text link
    Inelastic and diffractive production of J/psi mesons at HERA is reviewed. The data on inelastic photoproduction are described well within errors by the Colour Singlet Model in next-to-leading order. A search for colour octet processes predicted within the NRQCD/factorisation approach is conducted in many regions of phase space. No unambiguous evidence has been found to date. Diffractive elastic production of J/psi mesons has been measured in the limit of photoproduction up to the highest photon proton center of mass energies. The increase of the cross section is described by pQCD models. At larger Q^2, the W dependence is found to be similar to that observed in photoproduction. First analyses of data at high t yield a powerlike dependence on |t|. A LO BFKL calculation gives a good description of the data.Comment: 14 pages, 12 figures, contribution to Ringberg 200

    Upper bounds on all R-parity-violating \lambda\lambda'' combinations from proton stability

    Full text link
    In an R-parity-violating supersymmetric theory, we derive upper bounds on all the \lambda''_{ijk}\lambda_{i'j'k'}-type combinations from the consideration of proton stability, where \lambda''_{ijk} are baryon-number-violating couplings involving three baryonic fields and \lambda_{i'j'k'} are lepton-number-violating couplings involving three leptonic fields.Comment: 5 pages, Latex, uses axodraw.sty; minor changes in the text. Final versio

    On general flux backgrounds with localized sources

    Full text link
    We derive new consistency conditions for string compactifications with generic fluxes (RR, NSNS, geometrical) and localized sources (D-branes, NS-branes, KK-monopoles). The constraints are all related by string dualities and share a common origin in M-theory. We also find new sources of instabilities. We discuss the importance of these conditions for the consistency of the effective action and for the study of interpolating solutions between vacua.Comment: 29 pages, 2 figures, v2: published versio

    Chargino Production at an e-e- Collider

    Get PDF
    The chargino pair production in eee^-e^- collisions with their subsequent decays are considered within SUSY models with R-parity violation and with lepton number non-conservation. The production process (s=1\sqrt{s}=1 TeV) is predicted to be large in a wide range of both sneutrino and chargino masses. The influence of all virtual sneutrino states and their mixings with electrons are taken into account. Some specific situations are pointed out when significant suppressions of the cross section can take place. The chargino decays are discussed for either the chargino as LSP or the chargino as heavier sparticle. In both cases unique signals are possible with up to six charged fermions and without missing energy.Comment: 9 page

    N=1 effective potential from dual type-IIA D6/O6 orientifolds with general fluxes

    Get PDF
    We consider N=1 compactifications of the type-IIA theory on the T6/(Z2xZ2) orbifold and O6 orientifold, in the presence of D6-branes and general NSNS, RR and Scherk-Schwarz geometrical fluxes. Introducing a suitable dual formulation of the theory, we derive and solve the Bianchi identities, and show how certain combinations of fluxes can relax the constraints on D6-brane configurations coming from the cancellation of RR tadpoles. We then compute, via generalized dimensional reduction, the N=1, D=4 effective potential for the seven main moduli, and comment on the relation with truncated N=4 gaugings. As a byproduct, we obtain a general geometrical expression for the superpotential. We finally identify a family of fluxes, compatible with all Bianchi identities, that perturbatively stabilize all seven moduli in supersymmetric AdS4.Comment: 19 pages, no figures, JHEP3 LaTeX. Published versio

    Type-IIA flux compactifications and N=4 gauged supergravities

    Full text link
    We establish the precise correspondence between Type-IIA flux compactifications preserving an exact or spontaneously broken N=4 supersymmetry in four dimensions, and gaugings of their effective N=4 supergravities. We exhibit the explicit map between fluxes and Bianchi identities in the higher-dimensional theory and generalized structure constants and Jacobi identities in the reduced theory, also detailing the origin of gauge groups embedded at angles in the duality group. We present AdS4 solutions of the massive Type-IIA theory with spontaneous breaking to N=1, at small string coupling and large volume, and discuss their dual CFT3.Comment: 43 pages, 1 figure. v2: refs added, v3: minor additions. Final version to appear on JHE
    corecore