146 research outputs found

    Microbial Community Structure of Leaf-Cutter Ant Fungus Gardens and Refuse Dumps

    Get PDF
    BACKGROUND: Leaf-cutter ants use fresh plant material to grow a mutualistic fungus that serves as the ants' primary food source. Within fungus gardens, various plant compounds are metabolized and transformed into nutrients suitable for ant consumption. This symbiotic association produces a large amount of refuse consisting primarily of partly degraded plant material. A leaf-cutter ant colony is thus divided into two spatially and chemically distinct environments that together represent a plant biomass degradation gradient. Little is known about the microbial community structure in gardens and dumps or variation between lab and field colonies. METHODOLOGY/PRINCIPAL FINDINGS: Using microbial membrane lipid analysis and a variety of community metrics, we assessed and compared the microbiota of fungus gardens and refuse dumps from both laboratory-maintained and field-collected colonies. We found that gardens contained a diverse and consistent community of microbes, dominated by Gram-negative bacteria, particularly gamma-Proteobacteria and Bacteroidetes. These findings were consistent across lab and field gardens, as well as host ant taxa. In contrast, dumps were enriched for Gram-positive and anaerobic bacteria. Broad-scale clustering analyses revealed that community relatedness between samples reflected system component (gardens/dumps) rather than colony source (lab/field). At finer scales samples clustered according to colony source. CONCLUSIONS/SIGNIFICANCE: Here we report the first comparative analysis of the microbiota from leaf-cutter ant colonies. Our work reveals the presence of two distinct communities: one in the fungus garden and the other in the refuse dump. Though we find some effect of colony source on community structure, our data indicate the presence of consistently associated microbes within gardens and dumps. Substrate composition and system component appear to be the most important factor in structuring the microbial communities. These results thus suggest that resident communities are shaped by the plant degradation gradient created by ant behavior, specifically their fungiculture and waste management

    Discovery with Models: A Case Study on Carelessness in Computer-based Science Inquiry

    Get PDF
    In recent years, an increasing number of analyses in Learning Analytics and Educational Data Mining (EDM) have adopted a "Discovery with Models" approach, where an existing model is used as a key component in a new EDM/analytics analysis. This article presents a theoretical discussion on the emergence of discovery with models, its potential to enhance research on learning and learners, and key lessons learned in how discovery with models can be conducted validly and effectively. We illustrate these issues through discussion of a case study where discovery with models was used to investigate a form of disengaged behavior, i.e., carelessness, in the context of middle school computer-based science inquiry. This behavior has been acknowledged as a problem in education as early as the 1920s. With the increasing use of high-stakes testing, the cost of student carelessness can be higher. For instance, within computer-based learning environments careless errors can result in reduced educational effectiveness, with students continuing to receive material they have already mastered. Despite the importance of this problem, it has received minimal research attention, in part due to difficulties in operationalizing carelessness as a construct. Building from theory on carelessness and a Bayesian framework for knowledge modeling, we use machine-learned detectors to predict carelessness within authentic use of a computer-based learning environment. We then use a discovery with models approach to link these validated carelessness measures to survey data, to study the correlations between the prevalence of carelessness and student goal orientation. The second construct, carelessness, refers to incorrect answers given by a student on material that the student should be able to answer correctly Rodriguez-Fornells & Maydeu-Olivares, 2000). The application of discovery with models involves two main phases. First, a model of a construct is developed using machine learning or knowledge engineering techniques, and is then validated, as discussed below. Second, this validated model is applied to data and used as a component in another analysis: For example, for identifying outliers through model predictions; examining which variables best predict the modeled construct; finding relationships between the construct and other variables using correlations, predictions, associations rules, causal relationships or other methods; or studying the contexts where the construct occurs, including its prevalence across domains, systems, or populations. For example, in One essential question to pose prior to a discovery with model analysis is whether the model adopted is valid, both overall, and for the specific situation in which it is being used. Ideally, a model should be validated using an approach such as cross-validation, where the model is repeatedly trained on one portion of the data and tested on a different portion, with model predictions compared to appropriate external measures, for example assessments made by humans with acceptably high inter-rater reliability, such as field observations of student behavior for gaming the system (cf. Even after validating in this fashion, validity should be re-considered if the model is used for a substantially different population or context than was used when developing the model.. An alternative approach is to use a simpler knowledge-engineered definition, rationally deriving a function/rule that is then applied to the data. In this case, the model can be inferred to have face validity. However, knowledge-engineered models often DISCOVERY WITH MODELS: A CASE STUDY ON CARELESSNESS 6 produce different results than machine learning-based models, for example in the case of gaming the system. Research studying whether student or content is a better predictor of gaming the system identified different results, depending on which model was applied (cf. Baker, 2007a

    Time warping of evolutionary distant temporal gene expression data based on noise suppression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparative analysis of genome wide temporal gene expression data has a broad potential area of application, including evolutionary biology, developmental biology, and medicine. However, at large evolutionary distances, the construction of global alignments and the consequent comparison of the time-series data are difficult. The main reason is the accumulation of variability in expression profiles of orthologous genes, in the course of evolution.</p> <p>Results</p> <p>We applied Pearson distance matrices, in combination with other noise-suppression techniques and data filtering to improve alignments. This novel framework enhanced the capacity to capture the similarities between the temporal gene expression datasets separated by large evolutionary distances. We aligned and compared the temporal gene expression data in budding (<it>Saccharomyces cerevisiae</it>) and fission (<it>Schizosaccharomyces pombe</it>) yeast, which are separated by more then ~400 myr of evolution. We found that the global alignment (time warping) properly matched the duration of cell cycle phases in these distant organisms, which was measured in prior studies. At the same time, when applied to individual ortholog pairs, this alignment procedure revealed groups of genes with distinct alignments, different from the global alignment.</p> <p>Conclusion</p> <p>Our alignment-based predictions of differences in the cell cycle phases between the two yeast species were in a good agreement with the existing data, thus supporting the computational strategy adopted in this study. We propose that the existence of the alternative alignments, specific to distinct groups of genes, suggests presence of different synchronization modes between the two organisms and possible functional decoupling of particular physiological gene networks in the course of evolution.</p

    ProbFAST: Probabilistic Functional Analysis System Tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The post-genomic era has brought new challenges regarding the understanding of the organization and function of the human genome. Many of these challenges are centered on the meaning of differential gene regulation under distinct biological conditions and can be performed by analyzing the Multiple Differential Expression (MDE) of genes associated with normal and abnormal biological processes. Currently MDE analyses are limited to usual methods of differential expression initially designed for paired analysis.</p> <p>Results</p> <p>We proposed a web platform named ProbFAST for MDE analysis which uses Bayesian inference to identify key genes that are intuitively prioritized by means of probabilities. A simulated study revealed that our method gives a better performance when compared to other approaches and when applied to public expression data, we demonstrated its flexibility to obtain relevant genes biologically associated with normal and abnormal biological processes.</p> <p>Conclusions</p> <p>ProbFAST is a free accessible web-based application that enables MDE analysis on a global scale. It offers an efficient methodological approach for MDE analysis of a set of genes that are turned on and off related to functional information during the evolution of a tumor or tissue differentiation. ProbFAST server can be accessed at <url>http://gdm.fmrp.usp.br/probfast</url>.</p

    The role of the user within the medical device design and development process: medical device manufacturers' perspectives

    Get PDF
    Copyright @ 2011 Money et al.Background: Academic literature and international standards bodies suggest that user involvement, via the incorporation of human factors engineering methods within the medical device design and development (MDDD) process, offer many benefits that enable the development of safer and more usable medical devices that are better suited to users' needs. However, little research has been carried out to explore medical device manufacturers' beliefs and attitudes towards user involvement within this process, or indeed what value they believe can be added by doing so.Methods: In-depth interviews with representatives from 11 medical device manufacturers are carried out. We ask them to specify who they believe the intended users of the device to be, who they consult to inform the MDDD process, what role they believe the user plays within this process, and what value (if any) they believe users add. Thematic analysis is used to analyse the fully transcribed interview data, to gain insight into medical device manufacturers' beliefs and attitudes towards user involvement within the MDDD process.Results: A number of high-level themes emerged, relating who the user is perceived to be, the methods used, the perceived value and barriers to user involvement, and the nature of user contributions. The findings reveal that despite standards agencies and academic literature offering strong support for the employment formal methods, manufacturers are still hesitant due to a range of factors including: perceived barriers to obtaining ethical approval; the speed at which such activity may be carried out; the belief that there is no need given the 'all-knowing' nature of senior health care staff and clinical champions; a belief that effective results are achievable by consulting a minimal number of champions. Furthermore, less senior health care practitioners and patients were rarely seen as being able to provide valuable input into the process.Conclusions: Medical device manufacturers often do not see the benefit of employing formal human factors engineering methods within the MDDD process. Research is required to better understand the day-to-day requirements of manufacturers within this sector. The development of new or adapted methods may be required if user involvement is to be fully realised.This study was in part funded by grant number Ref: GR/S29874/01 from the Engineering and Physical Sciences Research Council. This article is made available through the Brunel University Open Access Publishing Fund

    PathEx: a novel multi factors based datasets selector web tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray experiments have become very popular in life science research. However, if such experiments are only considered independently, the possibilities for analysis and interpretation of many life science phenomena are reduced. The accumulation of publicly available data provides biomedical researchers with a valuable opportunity to either discover new phenomena or improve the interpretation and validation of other phenomena that partially understood or well known. This can only be achieved by intelligently exploiting this rich mine of information.</p> <p>Description</p> <p>Considering that technologies like microarrays remain prohibitively expensive for researchers with limited means to order their own experimental chips, it would be beneficial to re-use previously published microarray data. For certain researchers interested in finding gene groups (requiring many replicates), there is a great need for tools to help them to select appropriate datasets for analysis. These tools may be effective, if and only if, they are able to re-use previously deposited experiments or to create new experiments not initially envisioned by the depositors. However, the generation of new experiments requires that all published microarray data be completely annotated, which is not currently the case. Thus, we propose the PathEx approach.</p> <p>Conclusion</p> <p>This paper presents PathEx, a human-focused web solution built around a two-component system: one database component, enriched with relevant biological information (expression array, omics data, literature) from different sources, and another component comprising sophisticated web interfaces that allow users to perform complex dataset building queries on the contents integrated into the PathEx database.</p

    Discovery of Molecular Mechanisms of Traditional Chinese Medicinal Formula Si-Wu-Tang Using Gene Expression Microarray and Connectivity Map

    Get PDF
    To pursue a systematic approach to discovery of mechanisms of action of traditional Chinese medicine (TCM), we used microarrays, bioinformatics and the “Connectivity Map” (CMAP) to examine TCM-induced changes in gene expression. We demonstrated that this approach can be used to elucidate new molecular targets using a model TCM herbal formula Si-Wu-Tang (SWT) which is widely used for women's health. The human breast cancer MCF-7 cells treated with 0.1 µM estradiol or 2.56 mg/ml of SWT showed dramatic gene expression changes, while no significant change was detected for ferulic acid, a known bioactive compound of SWT. Pathway analysis using differentially expressed genes related to the treatment effect identified that expression of genes in the nuclear factor erythroid 2-related factor 2 (Nrf2) cytoprotective pathway was most significantly affected by SWT, but not by estradiol or ferulic acid. The Nrf2-regulated genes HMOX1, GCLC, GCLM, SLC7A11 and NQO1 were upreguated by SWT in a dose-dependent manner, which was validated by real-time RT-PCR. Consistently, treatment with SWT and its four herbal ingredients resulted in an increased antioxidant response element (ARE)-luciferase reporter activity in MCF-7 and HEK293 cells. Furthermore, the gene expression profile of differentially expressed genes related to SWT treatment was used to compare with those of 1,309 compounds in the CMAP database. The CMAP profiles of estradiol-treated MCF-7 cells showed an excellent match with SWT treatment, consistent with SWT's widely claimed use for women's diseases and indicating a phytoestrogenic effect. The CMAP profiles of chemopreventive agents withaferin A and resveratrol also showed high similarity to the profiles of SWT. This study identified SWT as an Nrf2 activator and phytoestrogen, suggesting its use as a nontoxic chemopreventive agent, and demonstrated the feasibility of combining microarray gene expression profiling with CMAP mining to discover mechanisms of actions and to identify new health benefits of TCMs

    Transcriptomic Analyses Reveal Novel Genes with Sexually Dimorphic Expression in the Zebrafish Gonad and Brain

    Get PDF
    Background Our knowledge on zebrafish reproduction is very limited. We generated a gonad-derived cDNA microarray from zebrafish and used it to analyze large-scale gene expression profiles in adult gonads and other organs. Methodology/Principal Findings We have identified 116638 gonad-derived zebrafish expressed sequence tags (ESTs), 21% of which were isolated in our lab. Following in silico normalization, we constructed a gonad-derived microarray comprising 6370 unique, full-length cDNAs from differentiating and adult gonads. Labeled targets from adult gonad, brain, kidney and ‘rest-of-body’ from both sexes were hybridized onto the microarray. Our analyses revealed 1366, 881 and 656 differentially expressed transcripts (34.7% novel) that showed highest expression in ovary, testis and both gonads respectively. Hierarchical clustering showed correlation of the two gonadal transcriptomes and their similarities to those of the brains. In addition, we have identified 276 genes showing sexually dimorphic expression both between the brains and between the gonads. By in situ hybridization, we showed that the gonadal transcripts with the strongest array signal intensities were germline-expressed. We found that five members of the GTP-binding septin gene family, from which only one member (septin 4) has previously been implicated in reproduction in mice, were all strongly expressed in the gonads. Conclusions/Significance We have generated a gonad-derived zebrafish cDNA microarray and demonstrated its usefulness in identifying genes with sexually dimorphic co-expression in both the gonads and the brains. We have also provided the first evidence of large-scale differential gene expression between female and male brains of a teleost. Our microarray would be useful for studying gonad development, differentiation and function not only in zebrafish but also in related teleosts via cross-species hybridizations. Since several genes have been shown to play similar roles in gonadogenesis in zebrafish and other vertebrates, our array may even provide information on genetic disorders affecting gonadal phenotypes and fertility in mammals
    corecore