224 research outputs found

    Evaluation of thermal insulation materials

    Get PDF
    Data was obtained on silicone-bonded fiberglass, isocyanurate foam, and two dozen other insulators. Materials were selected to withstand heat sterilization, outer space, and the Martian atmosphere. Significant environmental parameters were vibration, landing shock, and launch venting

    Pet pig medicine: 1. The normal pig

    Get PDF
    PET pigs are related to the Vietnamese potbellied pig, but many are also crossbred with commercial breeds such as the Large White, which can result in interesting body colour combinations. Some owners keep rare breeds, which helps to preserve genetic diversity. All pet pigs are the same species as commercial pigs – Sus scrofa – and this also includes the European wild boar. Management of pet pigs is subtly different from that of commercial pigs, and this should be borne in mind when dealing with these animals. This article describes how to handle and examine the pet pig, highlighting the normal parameters for these animals, and outlines the measures that can be implemented to prevent disease. An article in the next issue will discuss problems commonly encountered in pet pigs

    Tunable HMF hydrogenation to furan diols in a flow reactor using Ru/C as catalyst

    Get PDF
    5-hydroxymethylfurfural (HMF), accessible from various feedstocks, represents an important renewable platform-chemical, precursor for valuable biofuels and bio-based chemicals. In this work, the continuous hydrogenation of an aqueous solution of HMF to give strategic monomers, 2,5-bis(hydroxymethyl)furan (BHMF) and 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) was investigated in a continuous flow reactor adopting a commercial Ru/C (5 wt%) as catalyst. The influence of the main process variables on products yield and selectivity was studied and optimized. The highest BHMF and BHMTHF yields of 87.9 and 93.7 mol%, respectively, were achieved by tuning the catalyst contact time, keeping all other variables constant (temperature, pressure, hydrogen flow rate, initial HMF concentration). Intraparticle diffusion limitation for hydrogen and HMF was shown to occur at some of the tested conditions by performing the HMF hydrogenation with different catalyst particle sizes, confirmed by calculations. Constant catalyst activity was observed up to 6 h time-on-stream and then gradually reduced. Fresh and spent catalyst characterization showed no significant sintering and negligible leaching of ruthenium during time-on-stream. A decrease of the specific surface area was observed, mainly due to humin deposition which is likely the reason for catalyst deactivation. Catalyst performance could be restored to initial values by a thorough washing of the catalyst

    Efficient Mild Organosolv Lignin Extraction in a Flow-Through Setup Yielding Lignin with High beta-O-4 Content

    Get PDF
    Current lignin fractionation methods use harsh conditions that alter the native lignin structure, resulting in a recalcitrant material which is undesired for downstream processing. Milder fractionation processes allow for the isolation of lignins that are high in beta-aryl ether (beta-O-4) content, however, at reduced extraction efficiency. The development of improved lignin extraction methods using mild conditions is therefore desired. For this reason, a flow-through setup for mild ethanosolv extraction (120 degrees C) was developed. The influence of acid concentration, ethanol/water ratio, and the use of other linear alcohol co-solvents on the delignification efficiency and the beta-O-4 content were evaluated. With walnut shells as model feedstock, extraction efficiencies of over 55% were achieved, yielding lignin with a good structural quality in terms of beta-O-4 linking motifs (typically over 60 per 100 aromatic units). For example, lignin containing 66 beta-O-4 linking motifs was obtained with an 80:20 n-propanol/water ratio, 0.18 M H2SO4 with overall a good extraction efficiency of 57% after 5 h. The majority of the lignin was extracted in the first 2 hours and this lignin showed the best structural quality. Compared to batch extractions, both higher lignin extraction efficiency and higher beta-O-4 content were obtained using the flow setup

    Novel Route to Produce Hydrocarbons from Woody Biomass Using Molten Salts

    Get PDF
    [Image: see text] The thermochemical decomposition of woody biomass has been widely identified as a promising route to produce renewable biofuels. More recently, the use of molten salts in combination with pyrolysis has gathered increased interest. The molten salts may act as a solvent, a heat transfer medium, and possibly also a catalyst. In this study, we report experimental studies on a process to convert woody biomass to a liquid hydrocarbon product with a very low oxygen content using molten salt pyrolysis (350–450 °C and atmospheric pressure) followed by subsequent catalytic conversions of the liquids obtained by pyrolysis. Pyrolysis of woody biomass in molten salt (ZnCl(2)/NaCl/KCl with a molar composition of 60:20:20) resulted in a liquid yield of 46 wt % at a temperature of 450 °C and a molten salt/biomass ratio of 10:1 (mass). The liquids are highly enriched in furfural (13 wt %) and acetic acid (14 wt %). To reduce complexity and experimental issues related to the production of sufficient amounts of pyrolysis oils for further catalytic upgrading, model studies were performed to convert both compounds to hydrocarbons using a three-step catalytic approach, viz., (i) ketonization of acetic acid to acetone, (ii) cross-aldol condensation between acetone and furfural to C(8)–C(13) products, followed by (iii) a two-stage catalytic hydrotreatment of the latter to liquid hydrocarbons. Ketonization of acetic acid to acetone was studied in a continuous setup over a ceria–zirconia-based catalyst at 250 °C. The catalyst showed no signs of deactivation over a period of 230 h while also achieving high selectivity toward acetone. Furfural was shown to have a negative effect on the catalyst performance, and as such, a separation step is required after pyrolysis to obtain an acetic-acid-enriched fraction. The cross-aldol condensation reaction between acetone and furfural was studied in a batch using a commercial Mg/Al hydrotalcite as the catalyst. Furfural was quantitatively converted with over 90% molar selectivity toward condensed products with a carbon number between C(8) and C(13). The two-stage hydrotreatment of the condensed product consisted of a stabilization step using a Ni-based Picula catalyst and a further deep hydrotreatment over a NiMo catalyst, in both batch setups. The final product with a residual 1.5 wt % O is rich in (cyclo)alkanes and aromatic hydrocarbons. The overall carbon yield for the four-step approach, from pinewood biomass to middle distillates, is 21%, assuming that separation of furfural and acetic acid after the pyrolysis step can be performed without losses

    3D Domain Swapping Causes Extensive Multimerisation of Human Interleukin-10 When Expressed In Planta

    Get PDF
    Heterologous expression platforms of biopharmaceutical proteins have been significantly improved over the last decade. Further improvement can be established by examining the intrinsic properties of proteins. Interleukin-10 (IL-10) is an anti-inflammatory cytokine with a short half-life that plays an important role in re-establishing immune homeostasis. This homodimeric protein of 36 kDa has significant therapeutic potential to treat inflammatory and autoimmune diseases. In this study we show that the major production bottleneck of human IL-10 is not protein instability as previously suggested, but extensive multimerisation due to its intrinsic 3D domain swapping characteristic. Extensive multimerisation of human IL-10 could be visualised as granules in planta. On the other hand, mouse IL-10 hardly multimerised, which could be largely attributed to its glycosylation. By introducing a short glycine-serine-linker between the fourth and fifth alpha helix of human IL-10 a stable monomeric form of IL-10 (hIL-10mono) was created that no longer multimerised and increased yield up to 20-fold. However, hIL-10mono no longer had the ability to reduce pro-inflammatory cytokine secretion from lipopolysaccharide-stimulated macrophages. Forcing dimerisation restored biological activity. This was achieved by fusing human IL-10mono to the C-terminal end of constant domains 2 and 3 of human immunoglobulin A (Fca), a natural dimer. Stable dimeric forms of IL-10, like Fca-IL-10, may not only be a better format for improved production, but also a more suitable format for medical applications

    Biorefining of pigeon pea:Residue conversion by pyrolysis

    Get PDF
    Pyrolysis is an important technology to convert lignocellulosic biomass to a renewable liquid energy carrier known as pyrolysis oil or bio-oil. Herein we report the pyrolysis of pigeon pea wood, a widely available biomass in the Philippines, in a semi-continuous reactor at gram scale. The effects of process conditions such as temperature (400-600 ◦C), nitrogen flow rate (7-15 mL min−1) and particle size of the biomass feed (0.5-1.3 mm) on the product yields were determined. A Box-Behnken three-level, three-factor fractional factorial design was carried out to establish process-product yield relations. Of particular interest is the liquid product (bio-oil), of which the yield was shown to depend on all independent variables in a complex manner. The optimal conditions for highest bio-oil yield (54 wt.% on dry feed intake) were a temperature of 466 ◦C, a nitrogen flow rate of 14 mL min−1 and a particle size of 1.3 mm. Validation of the optimized conditions proved that the average (n = 3) experimental bio-oil yield (52 wt.%) is in good agreement with the predicted value from the model. The properties of product oils were determined using various analytical techniques including gas chromatography-mass spectrometry (GC-MS), gel-permeation chromatography (GPC), nuclear magnetic resonance spectroscopy (13C- and HSQC-NMR) and elemental and proximate analyses. The bio-oils were shown to have low ash content (0.2%), high heating value (29 MJ kg−1) and contain high value-added phenolics compounds (41%, GC peak area) as well as low molecular weight aldehydes and carboxylic acids. GPC analysis indicated the presence of a considerable amount of higher molecular weight compounds. NMR measurements showed that a large proportion of bio-oil contains aliphatic carbons (~60%), likely formed from the decomposition of (hemi)cellulose components, which are abundantly present in the starting pigeon pea wood. Subsequent preliminary scale-up pyrolysis experiments in a fluidized bed reactor (~100 gfeed h−1, 475 ◦C and N2 flow rate of 1.5 L min−1) gave a non-optimized bio-oil yield of 44 wt.%. Further fractionation and/or processing are required to upgrade these bio-oils to biofuels and biobased chemicals

    Catalytic Hydrogenation of Renewable Levulinic Acid to γ-Valerolactone:Insights into the Influence of Feed Impurities on Catalyst Performance in Batch and Flow Reactors

    Get PDF
    γ-Valerolactone (GVL) is readily obtained by the hydrogenation of levulinic acid (LA) and is considered a sustainable platform chemical for the production of biobased chemicals. Herein, the performance and stability of Ru-based catalysts (1 wt % Ru) supported on TiO2 (P25) and ZrO2 (monoclinic) for LA hydrogenation to GVL is investigated in the liquid phase in batch and continuous-flow reactors using water and dioxane as solvents. Particular attention is paid to the influence of possible impurities in the LA feed on catalyst performance for LA hydrogenation. Benchmark continuous-flow experiments at extended times on-stream showed that the deactivation profiles are distinctly different for both solvents. In dioxane, the Ru/ZrO2 catalyst is clearly more stable than Ru/TiO2, whereas the latter is slightly more stable in water. Detailed characterization studies on spent catalysts after long run times showed that the deactivation of Ru/TiO2 is strongly linked to the reduction of a significant amount of Ti4+ species of the support to Ti3+ and a decrease in the specific surface area of the support in comparison to the fresh catalyst. Ru/ZrO2 showed no signs of support reduction and displayed morphological and structural stability; however, some deposition of carbonaceous material is observed. Impurities in the LA feed such as HCOOH, H2SO4, furfural (FFR), 5-hydroxymethylfurfural (HMF), humins, and sulfur-containing amino acids impacted the catalyst performance differently. The results reveal a rapid yet reversible loss of activity for both catalysts upon HCOOH addition to LA, attributed to its preferential adsorption on Ru sites and possible CO poisoning. A more gradual drop in activity is found when cofeeding HMF, FFR, and humins for both solvents. The presence of H2SO4, cysteine, and methionine all resulted in the irreversible deactivation of the Ru catalysts. The results obtained provide new insights into the (ir)reversible (in)sensitivity of Ru-based hydrogenation catalysts to potential impurities in LA feeds, which is essential knowledge for next-generation catalyst development
    • …
    corecore