467 research outputs found

    Solving satisfiability problems by fluctuations: The dynamics of stochastic local search algorithms

    Full text link
    Stochastic local search algorithms are frequently used to numerically solve hard combinatorial optimization or decision problems. We give numerical and approximate analytical descriptions of the dynamics of such algorithms applied to random satisfiability problems. We find two different dynamical regimes, depending on the number of constraints per variable: For low constraintness, the problems are solved efficiently, i.e. in linear time. For higher constraintness, the solution times become exponential. We observe that the dynamical behavior is characterized by a fast equilibration and fluctuations around this equilibrium. If the algorithm runs long enough, an exponentially rare fluctuation towards a solution appears.Comment: 21 pages, 18 figures, revised version, to app. in PRE (2003

    Computational complexity arising from degree correlations in networks

    Full text link
    We apply a Bethe-Peierls approach to statistical-mechanics models defined on random networks of arbitrary degree distribution and arbitrary correlations between the degrees of neighboring vertices. Using the NP-hard optimization problem of finding minimal vertex covers on these graphs, we show that such correlations may lead to a qualitatively different solution structure as compared to uncorrelated networks. This results in a higher complexity of the network in a computational sense: Simple heuristic algorithms fail to find a minimal vertex cover in the highly correlated case, whereas uncorrelated networks seem to be simple from the point of view of combinatorial optimization.Comment: 4 pages, 1 figure, accepted in Phys. Rev.

    Boosting search by rare events

    Full text link
    Randomized search algorithms for hard combinatorial problems exhibit a large variability of performances. We study the different types of rare events which occur in such out-of-equilibrium stochastic processes and we show how they cooperate in determining the final distribution of running times. As a byproduct of our analysis we show how search algorithms are optimized by random restarts.Comment: 4 pages, 3 eps figures. References update

    Multifractal analysis of perceptron learning with errors

    Full text link
    Random input patterns induce a partition of the coupling space of a perceptron into cells labeled by their output sequences. Learning some data with a maximal error rate leads to clusters of neighboring cells. By analyzing the internal structure of these clusters with the formalism of multifractals, we can handle different storage and generalization tasks for lazy students and absent-minded teachers within one unified approach. The results also allow some conclusions on the spatial distribution of cells.Comment: 11 pages, RevTex, 3 eps figures, version to be published in Phys. Rev. E 01Jan9

    Random Graph Coloring - a Statistical Physics Approach

    Get PDF
    The problem of vertex coloring in random graphs is studied using methods of statistical physics and probability. Our analytical results are compared to those obtained by exact enumeration and Monte-Carlo simulations. We critically discuss the merits and shortcomings of the various methods, and interpret the results obtained. We present an exact analytical expression for the 2-coloring problem as well as general replica symmetric approximated solutions for the thermodynamics of the graph coloring problem with p colors and K-body edges.Comment: 17 pages, 9 figure

    A Causal Algebra for Liouville Exponentials

    Full text link
    A causal Poisson bracket algebra for Liouville exponentials on a cylinder is derived using an exchange algebra for free fields describing the in and out asymptotics. The causal algebra involves an even number of space-time points with a minimum of four. A quantum realisation of the algebra is obtained which preserves causality and the local form of non-equal time brackets.Comment: 10 page

    Entropy and typical properties of Nash equilibria in two-player games

    Full text link
    We use techniques from the statistical mechanics of disordered systems to analyse the properties of Nash equilibria of bimatrix games with large random payoff matrices. By means of an annealed bound, we calculate their number and analyse the properties of typical Nash equilibria, which are exponentially dominant in number. We find that a randomly chosen equilibrium realizes almost always equal payoffs to either player. This value and the fraction of strategies played at an equilibrium point are calculated as a function of the correlation between the two payoff matrices. The picture is complemented by the calculation of the properties of Nash equilibria in pure strategies.Comment: 6 pages, was "Self averaging of Nash equilibria in two player games", main section rewritten, some new results, for additional information see http://itp.nat.uni-magdeburg.de/~jberg/games.htm

    Glassy behavior induced by geometrical frustration in a hard-core lattice gas model

    Full text link
    We introduce a hard-core lattice-gas model on generalized Bethe lattices and investigate analytically and numerically its compaction behavior. If compactified slowly, the system undergoes a first-order crystallization transition. If compactified much faster, the system stays in a meta-stable liquid state and undergoes a glass transition under further compaction. We show that this behavior is induced by geometrical frustration which appears due to the existence of short loops in the generalized Bethe lattices. We also compare our results to numerical simulations of a three-dimensional analog of the model.Comment: 7 pages, 4 figures, revised versio

    Stability of the replica-symmetric saddle-point in general mean-field spin-glass models

    Full text link
    Within the replica approach to mean-field spin-glasses the transition from ergodic high-temperature behaviour to the glassy low-temperature phase is marked by the instability of the replica-symmetric saddle-point. For general spin-glass models with non-Gaussian field distributions the corresponding Hessian is a 2n×2n2^n\times 2^n matrix with the number nn of replicas tending to zero eventually. We block-diagonalize this Hessian matrix using representation theory of the permutation group and identify the blocks related to the spin-glass susceptibility. Performing the limit n→0n\to 0 within these blocks we derive expressions for the de~Almeida-Thouless line of general spin-glass models. Specifying these expressions to the cases of the Sherrington-Kirkpatrick, Viana-Bray, and the L\'evy spin glass respectively we obtain results in agreement with previous findings using the cavity approach

    Inference algorithms for gene networks: a statistical mechanics analysis

    Full text link
    The inference of gene regulatory networks from high throughput gene expression data is one of the major challenges in systems biology. This paper aims at analysing and comparing two different algorithmic approaches. The first approach uses pairwise correlations between regulated and regulating genes; the second one uses message-passing techniques for inferring activating and inhibiting regulatory interactions. The performance of these two algorithms can be analysed theoretically on well-defined test sets, using tools from the statistical physics of disordered systems like the replica method. We find that the second algorithm outperforms the first one since it takes into account collective effects of multiple regulators
    • …
    corecore