553 research outputs found

    Energy Spectra of H and He from the ATIC-2 Experiment

    Get PDF

    Isotopic anomalies from neutron reactions during explosive carbon burning

    Get PDF
    The possibility that the newly discovered correlated isotopic anomalies for heavy elements in the Allende meteorite were synthesized in the secondary neutron capture episode during the explosive carbon burning, the possible source of the O-16 and Al-26 anomalies, is examined. Explosive carbon burning calculations under typical conditions were first performed to generate time profiles of temperature, density, and free particle concentrations. These quantities were inputted into a general neutron capture code which calculates the resulting isotopic pattern from exposing the preexisting heavy seed nuclei to these free particles during the explosive carbon burning conditions. The interpretation avoids the problem of the Sr isotopic data and may resolve the conflict between the time scales inferred from 1-129, Pu-244, and Al-26

    The origin and propagation of VVH primary cosmic ray particles

    Get PDF
    Several source spectra were constructed from combinations of 4- and s-process nuclei to match the observed charge spectrum of VVH particles. Their propagation was then followed, allowing for interactions and decay, and comparisons were made between the calculated near-earth spectra and those observed during high altitude balloon flights. None of the models gave good agreement with observations

    Primary cosmic ray particles with z 35 (VVH particles)

    Get PDF
    Large areas of nuclear emulsions and plastic detectors were exposed to the primary cosmic radiation during high altitude balloon flights. From the analysis of 141 particle tracks recorded during a total exposure of 1.3 x 10 to the 7th power sq m ster.sec., a charge spectrum of the VVH particles has been derived

    Implications of new measurements of O-16 + p + C-12,13, N-14,15 for the abundances of C, N isotopes at the cosmic ray source

    Get PDF
    The fragmentation of a 225 MeV/n O-16 beam was investigated at the Bevalac. Preliminary cross sections for mass = 13, 14, 15 fragments are used to constrain the nuclear excitation functions employed in galactic propagation calculations. Comparison to cosmic ray isotonic data at low energies shows that in the cosmic ray source C-13/C approximately 2% and N-14/0=3-6%. No source abundance of N-15 is required with the current experimental results

    Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data

    Get PDF
    Using the ``modified DPMJET-III'' model explained in the previous paper, we calculate the atmospheric neutrino flux. The calculation scheme is almost the same as HKKM04 \cite{HKKM2004}, but the usage of the ``virtual detector'' is improved to reduce the error due to it. Then we study the uncertainty of the calculated atmospheric neutrino flux summarizing the uncertainties of individual components of the simulation. The uncertainty of KK-production in the interaction model is estimated by modifying FLUKA'97 and Fritiof 7.02 so that they also reproduce the atmospheric muon flux data correctly, and the calculation of the atmospheric neutrino flux with those modified interaction models. The uncertainties of the flux ratio and zenith angle dependence of the atmospheric neutrino flux are also studied

    Energy dependence of Ti/Fe ratio in the Galactic cosmic rays measured by the ATIC-2 experiment

    Get PDF
    Titanium is a rare, secondary nucleus among Galactic cosmic rays. Using the Silicon matrix in the ATIC experiment, Titanium has been separated. The energy dependence of the Ti to Fe flux ratio in the energy region from 5 GeV per nucleon to about 500 GeV per nucleon is presented.Comment: 8 pages, 4 figures, accepted for publication in Astronomy Letter

    Shape of primary proton spectrum in multi-TeV region from data on vertical muon flux

    Full text link
    It is shown, that primary proton spectrum, reconstructed from sea-level and underground data on muon spectrum with the use of QGSJET 01, QGSJET II, NEXUS 3.97 and SIBYLL 2.1 interaction models, demonstrates not only model-dependent intensity, but also model-dependent form. For correct reproduction of muon spectrum shape primary proton flux should have non-constant power index for all considered models, except SIBYLL 2.1, with break at energies around 10-15 TeV and value of exponent before break close to that obtained in ATIC-2 experiment. To validate presence of this break understanding of inclusive spectra behavior in fragmentation region in p-air collisions should be improved, but we show, that it is impossible to do on the basis of the existing experimental data on primary nuclei, atmospheric muon and hadron fluxes.Comment: Submitted to Phys. Rev.

    Upturn observed in heavy nuclei to iron ratios by the ATIC-2 experiment

    Get PDF
    The ratios of fluxes of heavy nuclei from sulfur (Z=16) to chromium (Z=24) to the flux of iron were measured by the ATIC-2 experiment. The ratios are decreasing functions of energy from 5 GeV/n to approximately 80 GeV/n, as expected. However, an unexpected sharp upturn in the ratios are observed for energies above 100 GeV/n for all elements from Z=16 to Z=24. Similar upturn but with lower amplitude was also discovered in the ATIC-2 data for the ratio of fluxes of abundant even nuclei (C, O, Ne, Mg, Si) to the flux of iron. Therefore the spectrum of iron is significantly different from the spectra of other abundant even nuclei.Comment: 4 pages, LaTeX2e, a paper for 23rd European Cosmic Ray Symposium (2012

    Possible structure in the cosmic ray electron spectrum measured by the ATIC-2 and ATIC-4 experiments

    Get PDF
    A strong excess in a form of a wide peak in the energy range of 300-800 GeV was discovered in the first measurements of the electron spectrum in the energy range from 20 GeV to 3 TeV by the balloon-borne experiment ATIC (J. Chang et al. Nature, 2008). The experimental data processing and analysis of the electron spectrum with different criteria for selection of electrons, completely independent of the results reported in (J. Chang et al. Nature, 2008) is employed in the present paper. The new independent analysis generally confirms the results of (J. Chang et al. Nature, 2008), but shows that the spectrum in the region of the excess is represented by a number of narrow peaks. The measured spectrum is compared to the spectrum of (J. Chang et al. Nature, 2008) and to the spectrum of the Fermi/LAT experiment.Comment: LaTeX2e, 10 pages, 4 figures, a paper for ECRS 2010 (Turku, Finland); http://www.astrophys-space-sci-trans.net/7/119/2011
    corecore