18 research outputs found
Linearly polarized GHz magnetization dynamics of spin helix modes in the ferrimagnetic insulator CuOSeO
Linear dichroism -- the polarization dependent absorption of electromagnetic
waves -- is routinely exploited in applications as diverse as structure
determination of DNA or polarization filters in optical technologies. Here
filamentary absorbers with a large length-to-width ratio are a prerequisite.
For magnetization dynamics in the few GHz frequency regime strictly linear
dichroism was not observed for more than eight decades. Here, we show that the
bulk chiral magnet CuOSeO exhibits linearly polarized magnetization
dynamics at an unexpectedly small frequency of about 2 GHz. Unlike optical
filters that are assembled from filamentary absorbers, the magnet provides
linear polarization as a bulk material for an extremely wide range of
length-to-width ratios. In addition, the polarization plane of a given mode can
be switched by 90 via a tiny variation in width. Our findings shed a
new light on magnetization dynamics in that ferrimagnetic ordering combined
with anisotropic exchange interaction offers strictly linear polarization and
cross-polarized modes for a broad spectrum of sample shapes. The discovery
allows for novel design rules and optimization of microwave-to-magnon
transduction in emerging microwave technologies.Comment: 20 pages, 4 figure
Band structure of helimagnons in MnSi resolved by inelastic neutron scattering
A magnetic helix realizes a one-dimensional magnetic crystal with a period
given by the pitch length . Its spin-wave excitations -- the
helimagnons -- experience Bragg scattering off this periodicity leading to gaps
in the spectrum that inhibit their propagation along the pitch direction. Using
high-resolution inelastic neutron scattering the resulting band structure of
helimagnons was resolved by preparing a single crystal of MnSi in a single
magnetic-helix domain. At least five helimagnon bands could be identified that
cover the crossover from flat bands at low energies with helimagnons basically
localized along the pitch direction to dispersing bands at higher energies. In
the low-energy limit, we find the helimagnon spectrum to be determined by a
universal, parameter-free theory. Taking into account corrections to this
low-energy theory, quantitative agreement is obtained in the entire energy
range studied with the help of a single fitting parameter.Comment: 5 pages, 3 figures; (v2) slight modifications, published versio
Low spin wave damping in the insulating chiral magnet CuOSeO
Chiral magnets with topologically nontrivial spin order such as Skyrmions
have generated enormous interest in both fundamental and applied sciences. We
report broadband microwave spectroscopy performed on the insulating chiral
ferrimagnet CuOSeO. For the damping of magnetization dynamics we
find a remarkably small Gilbert damping parameter of about at
5 K. This value is only a factor of 4 larger than the one reported for the best
insulating ferrimagnet yttrium iron garnet. We detect a series of sharp
resonances and attribute them to confined spin waves in the mm-sized samples.
Considering the small damping, insulating chiral magnets turn out to be
promising candidates when exploring non-collinear spin structures for high
frequency applications.Comment: 5 pages, 5 figures, and supplementary materia
Propagation dynamics of spin excitations along skyrmion strings
Magnetic skyrmions, topological solitons characterized by a two-dimensional swirling spin texture, have recently attracted attention as stable particle-like objects. In a three-dimensional system, a skyrmion can extend in the third dimension forming a robust and flexible string structure, whose unique topology and symmetry are anticipated to host nontrivial functional responses. Here we experimentally demonstrate the coherent propagation of spin excitations along skyrmion strings for the chiral-lattice magnet CuOSeO. We find that this propagation is directionally non-reciprocal and the degree of non-reciprocity, as well as group velocity and decay length, are strongly dependent on the character of the excitation modes. These spin excitations can propagate over a distance exceeding 50 μm, demonstrating the excellent long-range ordered nature of the skyrmion-string structure. Our combined experimental and theoretical analyses offer a comprehensive account of the propagation dynamics of skyrmion-string excitations and suggest the possibility of unidirectional information transfer along such topologically protected strings
Polarized inelastic neutron scattering of nonreciprocal spin waves in MnSi
We report spin-polarized inelastic neutron scattering of the dynamical structure factor of the conical magnetic helix in the cubic chiral magnet MnSi. We find that the spectral weight of spin-flip scattering processes is concentrated on single branches for wave-vector transfer parallel to the helix axis as inferred from well-defined peaks in the neutron spectra. In contrast, for wave-vector transfers perpendicular to the helix the spectral weight is distributed among different branches of the magnon band structure as reflected in broader features of the spectra. Taking into account the effects of instrumental resolution, our experimental results are in excellent quantitative agreement with parameter-free theoretical predictions. Whereas the dispersion of the spin waves in MnSi appears to be approximately reciprocal at low energies and small applied fields, the associated spin-resolved spectral weight displays a pronounced nonreciprocity that implies a distinct nonreciprocal response in the limit of vanishing uniform magnetization at zero magnetic field
Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets
Nearly seven decades of research on microwave excitations of magnetic materials have led to a wide range of applications in electronics(1-4). The recent discovery of topological spin solitons in chiral magnets, so-called skyrmions(5-9), promises high-frequency devices that exploit the exceptional emergent electrodynamics of these compounds(10-14). Therefore, an accurate and unified quantitative account of their resonant response is key. Here, we report all-electrical spectroscopy of the collective spin excitations in the metallic, semiconducting and insulating chiral magnets MnSi, Fe1-xCoxSi and Cu2OSeO3, respectively, using broadband coplanar waveguides. By taking into account dipolar interactions, we achieve a precise quantitative modelling across the entire magnetic phase diagrams using two material-specific parameters that quantify the chiral and the critical field energy. The universal behaviour sets the stage for purpose-designed applications based on the resonant response of chiral magnets with tailored electric conductivity and an unprecedented freedom for an integration with electronics
Propagation dynamics of spin excitations along skyrmion strings
Magnetic skyrmions, topological solitons characterized by a two-dimensional swirling spin texture, have recently attracted attention as stable particle-like objects. In a three-dimensional system, a skyrmion can extend in the third dimension forming a robust and flexible string structure, whose unique topology and symmetry are anticipated to host nontrivial functional responses. Here we experimentally demonstrate the coherent propagation of spin excitations along skyrmion strings for the chiral-lattice magnet Cu2OSeO3. We find that this propagation is directionally non-reciprocal and the degree of non-reciprocity, as well as group velocity and decay length, are strongly dependent on the character of the excitation modes. These spin excitations can propagate over a distance exceeding 50 mu m, demonstrating the excellent long-range ordered nature of the skyrmion-string structure. Our combined experimental and theoretical analyses offer a comprehensive account of the propagation dynamics of skyrmion-string excitations and suggest the possibility of unidirectional information transfer along such topologically protected strings. The propagation dynamics of skyrmions in three dimensions have attracted increasing attention. Here, the authors demonstrate the coherent and non-reciprocal propagation of spin excitations along skyrmion strings for the chiral-lattice magnet Cu2OSeO3 over a distance exceeding 50 mu m