26,070 research outputs found

    Numerical Calculation of Bessel Functions

    Full text link
    A new computational procedure is offered to provide simple, accurate and flexible methods for using modern computers to give numerical evaluations of the various Bessel functions. The Trapezoidal Rule, applied to suitable integral representations, may become the method of choice for evaluation of the many Special Functions of mathematical physics.Comment: 10 page

    Convergence of CI single center calculations of positron-atom interactions

    Get PDF
    The Configuration Interaction (CI) method using orbitals centered on the nucleus has recently been applied to calculate the interactions of positrons interacting with atoms. Computational investigations of the convergence properties of binding energy, phase shift and annihilation rate with respect to the maximum angular momentum of the orbital basis for the e^+Cu and PsH bound states, and the e^+-H scattering system were completed. The annihilation rates converge very slowly with angular momentum, and moreover the convergence with radial basis dimension appears to be slower for high angular momentum. A number of methods of completing the partial wave sum are compared, an approach based on a Delta X_J = a/(J + 1/2)^n + b/(J + 1/2)^(n+1) form (with n = 4 for phase shift (or energy) and n = 2 for the annihilation rate) seems to be preferred on considerations of utility and underlying physical justification.Comment: 23 pages preprint RevTeX, 11 figures, submitted to PR

    The effects of alcohol on driver performance in a decision making situation

    Get PDF
    The results are reviewed of driving simulator and in-vehicle field test experiments of alcohol effects on driver risk taking. The objective was to investigate changes in risk taking under alcoholic intoxication and relate these changes to effects on traffic safety. The experiments involved complex 15 minute driving scenarios requiring decision making and steering and speed control throughout a series of typical driving situations. Monetary rewards and penalties were employed to simulate the real-world motivations inherent in driving. A full placebo experimental design was employed, and measures related to traffic safety, driver/vehicle performance and driver behavior were obtained. Alcohol impairment was found to increase the rate of accidents and speeding tickets. Behavioral measures showed these traffic safety effects to be due to impaired psychomotor performance and perceptual distortions. Subjective estimates of risk failed to show any change in the driver's willingness to take risks when intoxicated

    Effects of low energy electron irradiation on formation of nitrogen-vacancy centers in single-crystal diamond

    Full text link
    Exposure to beams of low energy electrons (2 to 30 keV) in a scanning electron microscope locally induces formation of NV-centers without thermal annealing in diamonds that have been implanted with nitrogen ions. We find that non-thermal, electron beam induced NV-formation is about four times less efficient than thermal annealing. But NV-center formation in a consecutive thermal annealing step (800C) following exposure to low energy electrons increases by a factor of up to 1.8 compared to thermal annealing alone. These observations point to reconstruction of nitrogen-vacancy complexes induced by electronic excitations from low energy electrons as an NV-center formation mechanism and identify local electronic excitations as a means for spatially controlled room-temperature NV-center formation

    Gamma-ray burst variability above 4 MeV

    Get PDF
    The relationship between the hard X-ray and gamma ray emissions during four bursts using the anti-coincidence shields of the High Energy Astronomy Observatory 3 (HEAO 3) Gamma Ray Spectrometer is explored. Recent observations of gamma ray bursts by the Solar Maximum Mission Gamma Ray Spectrometer (GRS) have shown that high energy emission above 1 MeV is a common and energetically important feature (Matz et al. 1985). Time histories of four gamma ray bursts in 3 energy bands ( keV, around 511 keV, and 4 MeV) with 10.24 a resolution show that the 4 MeV flux is only weakly coupled to the spectrum below approximately 600 keV

    The ISPOR Lipid Conference: Pharmacoeconomics and Outcomes Modeling Issues

    Get PDF

    Discovery of a Jet-Like Structure at the High Redshift QSO CXOMP J084128.3+131107

    Full text link
    The Chandra Multiwavelength Project (ChaMP) has discovered a jet-like structure associated with a newly recognized QSO at redshift z=1.866. The system was 9.4 arcmin off-axis during an observation of 3C 207. Although significantly distorted by the mirror PSF, we use both a raytrace and a nearby bright point source to show that the X-ray image must arise from some combination of point and extended sources, or else from a minimum of three distinct point sources. We favor the former situation, as three unrelated sources would have a small probability of occurring by chance in such a close alignment. We show that interpretation as a jet emitting X-rays via inverse Compton (IC) scattering on the cosmic microwave background (CMB) is plausible. This would be a surprising and unique discovery of a radio-quiet QSO with an X-ray jet, since we have obtained upper limits of 100 microJy on the QSO emission at 8.46 GHz, and limits of 200 microJy for emission from the putative jet.Comment: 12 pages including 4 figures. Accepted for publication by ApJ Letter

    Hybrid simulations of lateral diffusion in fluctuating membranes

    Full text link
    In this paper we introduce a novel method to simulate lateral diffusion of inclusions in a fluctuating membrane. The regarded systems are governed by two dynamic processes: the height fluctuations of the membrane and the diffusion of the inclusion along the membrane. While membrane fluctuations can be expressed in terms of a dynamic equation which follows from the Helfrich Hamiltonian, the dynamics of the diffusing particle is described by a Langevin or Smoluchowski equation. In the latter equations, the curvature of the surface needs to be accounted for, which makes particle diffusion a function of membrane fluctuations. In our scheme these coupled dynamic equations, the membrane equation and the Langevin equation for the particle, are numerically integrated to simulate diffusion in a membrane. The simulations are used to study the ratio of the diffusion coefficient projected on a flat plane and the intramembrane diffusion coefficient for the case of free diffusion. We compare our results with recent analytical results that employ a preaveraging approximation and analyze the validity of this approximation. A detailed simulation study of the relevant correlation functions reveals a surprisingly large range where the approximation is applicable.Comment: 12 pages, 9 figures, accepted for publication in Phys. Rev.
    corecore