56 research outputs found

    Stable Lithium Argon compounds under high pressure

    Get PDF
    High pressure can fundamentally alter the bonding patterns of chemical elements. Its effects include stimulating elements thought to be “inactive” to form unexpectedly stable compounds with unusual chemical and physical properties. Here, using an unbiased structure search method based on CALYPSO methodology and density functional total energy calculations, the phase stabilities and crystal structures of Li−Ar compounds are systematically investigated at high pressure up to 300 GPa. Two unexpected Li(m)Ar(n) compounds (LiAr and Li(3)Ar) are predicted to be stable above 112 GPa and 119 GPa, respectively. A detailed analysis of the electronic structure of LiAr and Li(3)Ar shows that Ar in these compounds attracts electrons and thus behaves as an oxidizing agent. This is markedly different from the hitherto established chemical reactivity of Ar. Moreover, we predict that the P4/mmm phase of Li(3)Ar has a superconducting transition temperature of 17.6 K at 120 GPa

    Purification, Characterization and Partial Amino Acid Sequencing of Two New Aspartic Proteinases from Fresh Flowers of Cynara cardunculus L.

    Get PDF
    Two new aspartic proteinases have been isolated from stigmas of the cardoon Cynara cardunculus L. by a two-step purification procedure including extraction at low pH, gel filtration on Superdex 200, and ion-exchange chromatography on Mono Q. To follow the conventional nomenclature for aspartic proteinases, we have named these proteinases cardosin A and cardosin B. On SDS/PAGE, cardosin A migrated as two bands with apparent molecular masses of 31 000 Da and 15000 Da where as the chains of cardosin B migrated as bands of 34000 Da and 14000 Da. The partial amino acid sequences of the two cardosins revealed that they are similar but not identical, and that they differ horn the previously reported cardoon proteinases named cynarases, which were assumed to be derived from a common precursor. Although the cardosins show some degree of similarity to each other, we could detect no immunological cross-reactivity between them. Both cardosins were active at low pH and were inhibited by pepstatin, with Ki values of 3 nM for cardosin A and 1 nM for cardosin B, indicating that they belong to the class of aspartic proteinases. Significant differences between the two enzymes were also found for the Kcat/Km values for the hydrolysis of two chromophoric synthetic peptides. The active-site ionization constants, pKe1 and pKe2, for cardosin A are 2.5±0.2 and 5.3±20.2, whereas for cardosin R they are 3.73±10.09 and 6.7±50.1. The results herein described on the structural and kinetic properties of the cardosins indicate that they are the products of distinct genes which have probably arisen by gene duplication. A scheme for the proteolytic processing of the two enzymes is also proposed
    • 

    corecore