41 research outputs found

    Different carbon isotope fractionation patterns during the development of phototrophic freshwater and marine biofilms

    Get PDF
    Natural phototrophic biofilms are influenced by a broad array of abiotic and biotic factors and vary over temporal and spatial scales. Different developmental stages can be distinguished and growth rates will vary due to the thickening of the biofilm, which is expected to lead to a limitation of light or mass transport. This study shows that variation in CO<sub>2(aq)</sub> availability leads to a fractionation shift and thereby affects δ<sup>13</sup>C signatures during biofilm development. For phototrophic freshwater biofilms it was found that the δ<sup>13</sup>C value became less negative with the thickening of the biofilm, while the opposite trend was found in marine biofilms. Modeling and pH profiling indicated that the trend in the freshwater system was caused by an increase in CO<sub>2(aq)</sub> limitation resulting in an increase of HCO<sub>3</sub><sup>−</sup> as C-source. The opposite trend in the marine system could be explained by a higher heterotrophic biomass and activity causing a higher carbon recycling and thereby lower δ<sup>13</sup>C values. We conclude that δ<sup>13</sup>C was more related to the net areal photosynthesis rate and carbon recycling, rather than to the growth rate of the biofilms

    Influence of phosphorus on copper sensitivity of fluvial periphyton: the role of chemical, physiological and community-related factors

    Get PDF
    The influence of eutrophication of fluvial ecosystems (caused by increased phosphorus concentrations) on periphyton Cu sensitivity is explored from a multi-scale perspective, going from the field to the laboratory. The study design included three tiers: a field study including the characterization of land use and the ecological state of the corresponding river sections in the Fluvià River watershed, an experimental investigation performed with natural periphyton from the previously studied stream sites in indoor channels, and finally a culture study in the laboratory. Results showed that differences in copper sensitivity of natural periphyton communities followed the gradient of nutrient concentration found in the field. Results from the culture experiments demonstrated that both, P-conditions during growth and P-content in the media are important factors modulating the toxicological response of algae to Cu. The observations from this study indicate that the ecological effects of metal pollution in rivers might be obscured by eutrophication

    Short-term antioxidative responses of 15 microalgae exposed to excessive irradiance including ultraviolet radiation

    No full text
    Short-term photosensitivity and oxidative stress responses were compared for three groups of marine microalgae: Antarctic microalgae, temperate diatoms and temperate flagellates. In total, 15 low-light-acclimated species were exposed to simulated surface irradiance including ultraviolet radiation (SSI). Photosensitivity was assessed as the rate of recovery of Fv/Fm in the hours following SSI treatment. Before, during and after the SSI treatment, oxidative stress responses were assessed by following xanthophyll content and cycling, and activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase, and glutathione redox status. When acclimated to low irradiance, antioxidant levels were not group specific. Superoxide dismutase activity was positively correlated with cell size, whereas in general, ascorbate peroxidase activity appeared to be lower and glutathione redox status appeared to be higher in the Antarctic than in the temperate species. After SSI exposure, the strong inhibition of PSII was followed by variable rates of recovery, although four species remained photosynthetically inactive. SSI tolerance appeared unrelated to geographic or taxonomic background, or to cell size. PSII recovery was enhanced in species with decreasing superoxide dismutase activity, glutathione redox status and increased xanthophyll cycle activity. We conclude that antioxidant responses are highly species specific and not related to the geographic or taxonomic background. Furthermore, xanthophyll cycling seems more important than antioxidants. Finally, it can be hypothesized that glutathione could function as a stress sensor and response regulator
    corecore