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Abstract. Natural phototrophic biofilms are influenced by a
broad array of abiotic and biotic factors and vary over tem-
poral and spatial scales. Different developmental stages can
be distinguished and growth rates will vary due to the thick-
ening of the biofilm, which is expected to lead to a limitation
of light or mass transport. This study shows that variation in
CO2(aq) availability leads to a fractionation shift and thereby
affects δ13C signatures during biofilm development. For
phototrophic freshwater biofilms it was found that theδ13C
value became less negative with the thickening of the biofilm,
while the opposite trend was found in marine biofilms. Mod-
eling and pH profiling indicated that the trend in the fresh-
water system was caused by an increase in CO2(aq) limitation
resulting in an increase of HCO−3 as C-source. The opposite
trend in the marine system could be explained by a higher
heterotrophic biomass and activity causing a higher carbon
recycling and thereby lowerδ13C values. We conclude that
δ13C was more related to the net areal photosynthesis rate
and carbon recycling, rather than to the growth rate of the
biofilms.

1 Introduction

Phototrophic biofilms are surface-associated microbial com-
munities, in which light is the ultimate source of energy
and biomass originates mainly from microalgae and bacteria.
They thrive on submerged biotic or abiotic substrata in light-
exposed aquatic environments and exo-biopolymers (mostly
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polysaccharides) provide adhesion and cohesion to the mi-
crobial consortia in these biofilms (Decho, 2000). During the
initial phase of biofilm development the maximum growth
rate is determined by the incident irradiance, since at that
stage the biofilm thickness does not limit diffusive transport
of any of the substrates. Eventually, with the thickening of
a biofilm both light attenuation and diffusive transport will
progressively become limiting factors for growth. Diffusion
limitation will increase during the development of a biofilm
due to an increased biovolume-to-surface ratio, while the po-
tential volumetric enzymatic rates remain equal. At high ir-
radiances mass transfer eventually determines the maximum
thickness of a biofilm.

Phototrophic biofilms grow in all aquatic systems ranging
from freshwater to hyper saline and all oxygenic phototrophs
use RUBISCO in their photosynthetic apparatus for carbon
fixation, and the inorganic carbon source used by RUBISCO
is CO2(aq). One difference between freshwater and seawater
chemistry is that seawater has higher inorganic carbon con-
tents and stronger carbonate buffering (Stumm and Morgan,
1995). This results in a higher pH and a dominance in bi-
carbonate concentration relative to CO2(aq). In marine sys-
tems the dissolved inorganic pool consists of dissolved CO2
(<1%), HCO−

3 (∼95%), and CO2−

3 (∼5%). Due to the low
CO2(aq) concentration and a slow chemical conversion rate
of HCO−

3 to CO2, the supply of CO2(aq) may be considered
as a potentially limiting factor. On the other hand, high res-
piration rates of heterotrophic and phototrophic organisms
present in biofilms may elevate the CO2(aq) levels and as a
result lower the pH.
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The inorganic carbon pool available for phototrophs con-
sists of carbon atoms with different atomic weights, mainly
12C (∼99%) and13C (∼1%) (Raven, 1998). Organic car-
bon in phototrophic organisms is generally depleted in13C
relative to the carbon source. This depletion is caused by
a biological fractionation due to an enzymatic discrimina-
tion against13C in the photosynthetic process (Hayes, 1993).
Under non-limiting conditions, fractionation by RUBISCO
results in aδ13C ranging from−29‰ in plants to−21‰ in
cyanobacteria (Roeske and O’Leary, 1985); eukaryotic algae
haveδ13C values intermediate of these (Lewis et al., 2000).
However, the overall fractionation ofδ13C in phototrophic
biofilms is not only the result of the biochemical properties of
RUBISCO, but is also affected by CO2(aq) limitation within
the biofilm, which will lower the effective enzymatic frac-
tionation of RUBISCO for two reasons: First, the compe-
tition between both substrates13CO2(aq) and 12CO2(aq) for
the binding sites in RUBISCO becomes less as the diffusive
transport becomes more important for the CO2 binding rate
to the enzyme; it can be assumed that the diffusive trans-
port rate is equal for both substrates. Second, discrimination
against13C will lead to a13C enrichment of the remaining
CO2(aq) pool. A shift in isotopic composition of the dis-
solved inorganic carbon (DIC) pool will result in an addi-
tional change inδ13C of the organic matter since fractiona-
tion (ε) is independent of theδ13C from the source (Lewis et
al., 2000; Werne and Hollander, 2004; Hayes, 1993).

Many algae can increase the conversion rate of HCO−

3 to
CO2(aq) by the enzyme carbonic anhydrase (CA) (Tortell and
Morel, 2002; Cassar et al., 2004) and thereby increase the
availability of CO2 for RUBISCO. This enzyme catalyzes the
hydration and dehydration of CO2. The presence of CA ac-
tivity in phototrophic biofilms will influence theδ13CO2(aq)
and can increase the biomassδ13C up to 10‰ (Goericke et
al., 1994).

Most studies onδ13C in photosynthetic microorganisms
focus on phytoplankton species and it is found thatδ13C
values of cultured marine phytoplankton species vary from
−30‰ to −18‰, while freshwater phytoplanktonδ13C
ranges between−40‰ to −25‰. Theδ13C values do not
only vary amongst species (Lewis et al., 2000), they also vary
within species due to environmental factors such as growth
rate, pH of the medium (i.e. CO2(aq) availability) and irradi-
ance (Johnston et al., 2004; Swansburg et al., 2002).δ13C
values are frequently used as proxies for food sources in
food web studies (delGiorgio and France, 1996; March and
Pringle, 2003). Since phototrophic biofilms can be important
food sources in aquatic ecosystems (Bott, 1996; Charlebois
and Lamberti, 1996; France, 1996; Boschker et al., 2005)
it is important to understand the processes that cause vari-
ations inδ13C within such surface-associated communities.
Little is known about the factors that influence theδ13C of
phototrophic biofilms but the values are reported to vary
with growth rate, irradiance, turbulence, and flow velocity
(Trudeau and Rasmussen, 2003; France, 1995a).

In this study we investigated the development of marine
and freshwater phototrophic biofilms grown under defined
environmental conditions from natural inoculates. We mea-
sured theδ13C values at the different stages in the biofilm de-
velopment along with a range of water chemistry and biofilm
parameters. The aim of the study was to analyze the varia-
tion of theδ13C during biofilm development and identify key
biotic and abiotic processes for carbon isotope fractionation
in phototrophic biofilms.

2 Methods

Freshwater and marine phototrophic biofilms were grown on
removable transparent polycarbonate slides in an incubator
(Zippel and Neu, 2005), allowing the development of algal-
dominated biofilms at defined irradiance and flow regimes.
The incubator contains 4 physically separated incubation
lanes, each with a specific irradiance. Every lane had its own
growth medium reservoir. Incubators were inoculated with
homogenized phototrophic biofilm material. The inoculum
for the freshwater biofilms grew on surfaces in the sedimen-
tation tank of the waste water treatment of Fumicino airport,
Rome (Congestri et al., 2005). The marine inoculum origi-
nated from biofilms growing on continuously submerged sur-
faces in flowing Oosterschelde water, the Netherlands. In-
oculation material was mechanically homogenized and then
frozen in order to kill fauna and prevent top-down control of
the biofilm as much as possible. The freshwater medium was
a modified BG 11-medium (http://www.pasteur.fr/recherche/
banques/PCC/Media.htm), with 20µM silicate to allow di-
atom development. The marine biofilms were grown in
medium prepared with commercially available aquarium sea
salt (HW Meeressalz Professional, Wiegand, Germany) with
additional silicate (20µM), nitrate (0.35 mM), and phosphate
(24µM).

The medium (4 L per lane) was continuously circulated at
flow rates of 25 or 100 l/h and was replaced twice a week.
The water level was∼3 mm above the biofilm, resulting in a
water velocity of∼0.5 or 2 m/s. The pH of the medium was
measured with a pH electrode after its preparation. The pH
of renewed freshwater medium was 7.7 while it was 8.1 for
the marine medium. It was found that the pH changed during
the residence period of 3 or 4 days of the medium in the in-
cubator. Biofilms were grown at a range of different growth
conditions (Table 1) and the development of the biofilm was
followed by continuous recording of the light absorbance us-
ing 9 light sensors glued on the bottom of several slides along
each flow lane. Absorbed light absorbance was used as a
proxy for the phototrophic biomass at the given growth con-
ditions (Zippel et al., 2007). Growth rates were estimated by
fitting a Richards logistic growth equation (Sidorkewicj et al.,
1999) through the light absorption values. The fit quality of
the logistic growth model through the measuring points was
high (averager2=0.975±0.038, lowestr2 value was 0.820).
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Table 1. Growth conditions and relative growth rates at the different incubations. Relative growth rates were calculated at a biomass 50%
light absorption using the fitted parameters from the logistic growth equation. The fit quality of the growth model trough the measuring
points was high (average r2=0.975±0.038).

medium temperature Flow m/s Relative Growth rate at
50% absorbance

Irradiance
15 30 60 120

freshwater 20 0.5 0.54 1.55 1.56 1.78
2 0.65 0.86 1.14 2.11

30 0.5 0.34 0.52 1.08 1.44
2 0.66 1.18 2.40 3.31

salt water 25 0.5 0.83 1.24 2.41 2.72
2 0.74 0.86 1.46 2.01

15 0.5 0.53 0.84 1.13 1.97
2 0.74 0.79 1.61 1.89

For sampling the biofilm samples were scraped off the slide
and the wet weight was determined for each sample. The
samples dry weight was measured and samples were stored
at−80◦C until δ13C analysis. The wet weight of the biofilms
was found to increase linearly with light absorption values of
up to 85–90% (data not shown). Ther2 was 0.38 (n=34)
and 0.55 (n=44) for the pooled freshwater and marine incu-
bations respectively (both regression lines were significant;
P<0.01).

The δ13C values were determined at 3 different growth
stages during biofilm development. A first sample was al-
ways taken 10 days after inoculation (initial phase), the sec-
ond sample was taken at the first working day after∼50%
light absorption was reached (exponential growth phase) and
the third sample was taken at the first working day after
∼90% light absorption was reached (mature or stationary
phase). Sampling started close to the outlet of the incuba-
tor to prevent disturbance of biofilms growing on the other
slides. Sampled slides were replaced by slides with no
biofilm to prevent additional turbulence caused by height dif-
ferences. There were not enough slides in the incubator for
(pseudo) replicate sampling per irradiance per growth stage.
However, a test run on freshwater medium revealedδ13C
values of−23.33±0.48, −24.55±0.33, −27.66±1.07 and
35.17±0.02 for the lanes with irradiances of 120, 60, 30 and
15µmol photons m−2 s−1 respectively. Standard deviations
of the average values (n=3) were low (SD<4% of average
value) and therefore a randomly sampled slide may be con-
sidered as representative for the entire lane.

2.1 Stable isotope analysis

Biofilm samples were analyzed for naturalδ13C abundance
by a total combustion elemental analyzer coupled to an iso-
tope ratio mass spectrometer (IRMS) (Finnigan, Germany).

Samples were combusted at 1010◦C and transported with a
helium (5.0 purity) carrier gas flow to the IRMS for deter-
mining the isotopic13C/12C ratio of carbon. Stable isotope
ratios were calculated as:

δ13C=


(

13C
12C

)
sample(

13C
12C

)
standard

−1

 × 1000 (1)

where the standard is the C-isotope ratio of Vienna PeeDee
Belemnite (0.0112372).

Samples for total dissolved inorganic carbon (DIC) were
taken weekly per lane as well as of new made medium. The
concentration of DIC in the medium was determined by acid-
ifying 50ml medium with 500µl pure phosphoric acid in a
closed container (Crimp Seal, Chrompack, the Netherlands)
to convert all HCO−3 and CO2−

3 into CO2. The samples were
stored at room temperature to reach equilibrium with the gas
phase (5 ml). 500µl of the gas phase was injected into a
GC with a Poraplot Q column which was linked to the IRMS
(Finnigan, Germany) forδ13C analysis. The CO2(aq) concen-
tration was calculated using a calibration curve.

Fractionation (ε) was calculated for each growth phase as
the difference between the averageδ13DIC and theδ13C of
the biofilm sampled at that phase. Fractionation was calcu-
lated according to the equation:

ε = (δ13DIC−δ13Cbiofilm)/(1 + δ13Cbiofilm/1000) (2)

(Freeman and Hayes, 1992). Fractionation was calculated
directly for the initial phase biofilms. However, during the
exponential and mature phase, fractionation was calculated
from the averageδ13DIC during each specific development
stage and theδ13C of the newly formed biomass. Theδ13C
of the newly formed biomass was calculated according to

bt+1 δ13Ct+1−bt δ13Ct

(bt+1 − bt )
(3)
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wherebt+1 denotes the C-biomass at the phase of sampling
andbt the C-Biomass in the previous phase.

2.2 PLFA-determination

Phospholipid-derived fatty acids (PLFA) originating from
cell membranes were used as group specific biomarkers to
determine the relative abundance of heterotrophic and pho-
totrophic biomass. PLFA extraction and derivatization was
done by an adapted Blyer and Digh protocol (Boschker,
2004). Analysis of the methylated forms of PLFA was done
by gas chromatography-flame ionization detection (GC-FID,
Interscience, Belgium) using a polar analytical column (Sci-
entific Glass Engineering BPX-70). Biomass contribution of
heterotrophic components was estimated byChemtaxas de-
scribed in Dijkman et al. (2006)

2.3 pH profiling

Three adjacent slides covered with biofilm were removed
from the incubator and positioned into an external flow
chamber with fresh medium. The environmental conditions
in the external flow chamber (flow, temperature, irradiance)
were identical to the respective conditions in the biofilm in-
cubator. Glass pH microelectrodes (Glud et al., 1992) were
used to measure depth-profiles of pH in the phototrophic
biofilms. The pH microelectrode and a standard calomel ref-
erence electrode (Radiometer, Denmark) were connected to
a high-impedance millivoltmeter (Keithley, USA). The mi-
crosensor was mounted on a motorized micromanipulator
(Unisense A/S, Denmark) and depth-profiles were automati-
cally recorded on a PC with a data acquisition system (Profix,
Unisense A/S, Denmark). The pH microsensors were cali-
brated in standard pH buffer solutions of pH 7 and pH 10
(Radiometer, Denmark) and exhibited almost ideal Nerns-
tian response characteristics and a response time of<60 s.
The surface position where the pH microsensor touched the
biofilm surface was estimated by visual inspection with a dis-
section microscope while approaching the sensor tip to the
biofilm surface. In order to ensure steady state conditions,
the biofilm samples were left in the external flow chamber
for 30 min in the light before pH measurements were initi-
ated. Similarly, light was switched off for 30 min before the
pH profiles in darkness were acquired.

2.4 Biofilm modeling

In order to explain the variation inδ13C values found in the
freshwater biofilms, we constructed a model describing the
chemical and biological processes in a developing freshwa-
ter biofilm. Growth and relevant metabolic and geochem-
ical processes in the biofilm were modeled with thePHO-
BIA biofilm kinetic model programmed in Aquasim 2.1 (de-
tails in Wolf et al., 2007). The model is a multi-species
and multi-substrate mechanistic biofilm model, which has

been developed based on the general one-dimensional math-
ematical biofilm model (Reichert, 1998). It contains kinet-
ics that describes the interactions between photoautotrophic,
heterotrophic and chemoautotrophic (nitrifying) functional
microbial groups. The biological processes in the model in-
clude biomass growth, biomass inactivation and lysis, sub-
strate and nutrient conversion. Growth is estimated as max-
imum growth rate multiplied by a limitation term, based on
the most limiting substrate at the given time points. Light is
considered as an energy source and light dependent carbon
fixation by phototrophs is modeled via the Eilers and Peeters
relationship (Eilers and Peters, 1988), which accounts for
light saturation and photoinhibition. Biofilm-specific phe-
nomena are taken into account, such as extracellular poly-
meric substances (EPS) production by phototrophs as well
as gradients of substrates and light in the biofilm. Acid-
base equilibria, in particular carbon speciation, are explic-
itly accounted for, allowing for the calculation of pH profiles
and profiles of the different abiotic carbon species across the
biofilm based on chemical acid-base-equilibriums as well as
consumption and production terms. The model distinguishes
between the usage of different inorganic carbon sources by
photoautotrophs, i.e. CO2(aq) and bicarbonate and combines
a number of kinetic mechanisms specific to phototrophic mi-
crobial communities, such as internal polyglucose storage
under dynamic light conditions, phototrophic growth in the
darkness using internally stored reserves, photoadaptation
and photoinhibition. We used the same model parameters
as Wolf et al. (2007). The settings of the model were based
on the measured DIC concentrations and biofilm photosyn-
thesis/respiration rates within the incubator (data not shown).

2.5 Statistical considerations

Due to some lacking data points and the impossibility of
replication it was impossible to use multiple component sta-
tistical analysis tests. Therefore, the results have been tested
per parameter using the single factor ANOVA test. If varia-
tion of an incubation parameter (i.e. flow rate, temperature,
irradiance, medium type) did not yield significant differences
in the measured growth parameters, we considered it accept-
able to pool data of that specific parameter for further analy-
sis.

3 Results

Phototrophic biofilm development depended mainly on ir-
radiance (Fig. 1). High incident irradiance resulted in a
shorter lag time as well as in a faster biofilm develop-
ment due to a higher growth rate. Relative growth rates
at 50% light absorption, as calculated from the fitted logis-
tic growth curve (Table 1), varied significantly with irradi-
ance (P<0.05) within the growth conditions applied. We
found no differences in the relative growth rates (at 50%
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light absorption) between marine or freshwater biofilms, nor
did we find an effect of the flow rate on the growth rate
(P >0.05). The temperature seemed to have some effect on
the growth rate, but within the experimental design this was
not significant (P>0.05).

The δ13C values of the different biofilms were mea-
sured at three developmental stages. For the freshwa-
ter biofilms it was found thatδ13C values became less
negative with an increase in biomass (Figs. 2a–d, sim-
ilar trends in δ13C values were also found in biofilms
grown outdoors in a helophyte filter, see Fig. 1 in supple-
mentary information –http://www.biogeosciences.net/4/613/
2007/bg-4-613-2007-supplement.pdf). Changes inδ13C
were strongest for biofilms grown at the highest irradi-
ances. However, the increase was not related to the ac-
tual growth rate of the biofilm. The biofilm development
was described well by a logistic growth model. A lo-
gistic growth model per definition depicts a decrease in
net growth rate as soon as biomass values reach a value
above 50% of the maximum biomass in the system. Con-
sidering the good fit quality of the model through the
measured growth curves (averager2=0.975±0.038 n=24
curves, lowestr2 value was 0.820), it implies that the ac-
tual growth rate was highest during the initial and expo-
nential phase, whereas the net growth rate decreased there-
after with biofilm thickening (see also Fig. 2 in supple-
mentary information –http://www.biogeosciences.net/4/613/
2007/bg-4-613-2007-supplement.pdf). At the point where
theδ13C value increased, the average growth rate was below
the maximum growth rate.

Theδ13C values showed a contrasting trend during the de-
velopment of the marine biofilm (Figs. 3a–d). Theδ13C val-
ues during the initial phase were higher (∼9‰) than in the
freshwater biofilms, but instead of increasing with the thick-
ening of the biofilm, the values became more negative over
time.

The DIC concentrations were 0.34±0.05 mM and
1.5±0.4 mM in the freshwater and marine medium, respec-
tively. The δ13DIC in the media were measured for the
two 30◦C freshwater runs and for all marine runs. The
average initialδ13DIC value in freshwater was−10.9±0.8‰
while it was −6.6±1.2‰ in salt water medium. For the
incubations of whichδ13DIC values were measured it
was possible to calculate the fractionation (ε) for each
growth phase (Fig. 4). The fractionation was significantly
lower in the marine (ε=13.1±1.5‰, n=16) compared to
the freshwater incubations (ε=17.5±1.5‰, n=8) (P<0.05)
during growth in the initial phase. No effect of irradiance
on fractionation was found during this phase for both
marine and freshwater incubations (Pfreshwater=0.267 and
Pmarine=0.42). For the freshwater runs a trend of decreasing
fractionation with increasing irradiances was found during
the exponential growth phase. This trend was stronger
during mature growth. Fractionation values did not differ
significantly between the irradiances regime during growth
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Fig. 1. Biomass development of phototrophic biofilms grown in
freshwater and marine growth mediums.(a) Typical example of
biomass development at 4 different irradiances in a freshwater
growth medium, incubated at 30 ˚ C and 0.5 m/s flow.(b) Typical
example of biomass development at 4 different irradiances in a ma-
rine growth medium, incubated at 15◦C and 0.5 m/s.(c) Average
relative growth rates at 50% light absorbance for the four differ-
ent irradiances. One overall average growth rate per irradiance was
calculated from the growth rates of all incubations. The error bars
represent the standard deviation on the average value. The relative
growth rates were estimated using a logistic growth model.

in these phases (P>0.05). The marine incubations showed
an increase in fractionation at all irradiance regimes during
the exponential phase. In the mature phase this increase
continued at 60µmol photons m−2 s−1. An opposite trend
was found for the incubations at 120µmol photons m−2 s−1.
At this irradiance fractionation decreased during the mature
phase. Fractionation values differed significantly (P<0.05)
between both irradiances in mature marine biofilms.
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Fig. 2. Development ofδ13C values in the bulk biomass in developing freshwater phototrophic biofilms. Figures(a–d)show the relationship
of δ13C values with biomass for each treatment (temperature and flow rate are indicated in the graphs). Biomass is expressed as light
absorption.(e) δ13C value samples taken at the end of the run to overcome the effects in changes in pH in the medium. Symbols indicate
different irradiances 120µmol photons m−2 s−1 (closed squares), 60µmol photons m−2 s−1 (open circles), 30µmol photons m−2 s−1

(closed triangles) and 15µmol photons m−2 s−1 (open triangles).

For one freshwater run and one marine run, additional
δ13C samples were taken at the end of the run. The rea-
son for the additional sampling was that the pH in the
medium changed during the incubation (Fig. 5) affecting the
CO2(aq)/HCO−

3 ratio in the overlying water, which may ex-
plain the observed variations inδ13C. The change in pH was
more pronounced at high biofilm biomass and high irradi-
ance.

For this additional sampling, we used slides that were put
in the incubator as a replacement of the slides sampled dur-
ing the course of the run. Some of these slides (replace-
ments for the mature samples) have only been for 5–8 days
in the incubator and only contained little biomass (equiva-
lent to the initial phase). The difference with the normal in-
cubations is that these low biomass samples have been in-
cubated, in medium at the moment that the pH change were
most pronounced. Despite this difference in the pH history,
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Fig. 3. Development ofδ13C values in the bulk biomass in developing marine phototrophic biofilms. Figures(a–d)show the relationship of
δ13C values with biomass per treatment (temperature and flow rate are indicated in the graphs). Biomass is expressed as light absorption.(e)
δ13C value samples taken at the end of the run to overcome the effects in changes in pH in the medium. Symbols indicate different irradiances
120µmol photons m−2 s−1(closed squares), 60µmol photons m−2 s−1 (open circles), 30µmol photons m−2 s−1 (closed triangles) and
15µmol photons m−2 s−1 (open triangles).

the δ13C values in these additional experiments showed the
same trend with biomass development (Figs. 2e and 3e)
as was found in the normal freshwater and marine experi-
ments. However, the effect of light was more pronounced
than observed under the normal sampling procedure. Un-
fortunately we were not able to collect samples from the
marine 120µmol photons m−2 s−1 for this experiment, since
growth on these replacement slides was so fast that they were
all above the 85–90% absorption value for longer than one
week.

Besides the pH of the medium, pH depth profiles were
measured in biofilms, both in the exponential and the ma-
ture growth phase (Fig. 6). Biofilm thickness varied consid-
erably at each growth stage. This is indicative for a large
spatial heterogeneity of the biofilm structure but the profiles
show a consistent and representative trend of typical in situ
pH characteristics for each treatment. In darkness, the pH
in the freshwater biofilm matrix did not vary significantly
from the pH in the overlaying water, whereas in light the
pH clearly increased with depth. This can be taken as an
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Table 2. Percentage of heterotrophic biomass relative to the total biomass present in the different treatments based on chemtax analysis of
the PLFA determination (NA = not analyzed due to a low amounts of biomass).

Medium Temperature Flow (m/s) Irradianceµmol photons
m−2 s−1

120 60 30 15

Freshwater 20 0.5 7 5 15 8
2 2 8 15 NA

30 0.5 2 6 6 NA
2 5 2 2 NA

Average Freshwater 4 5 10 8

Saltwater 15 0.5 6 11 11 NA
2 18 15 17 19

25 0.5 15 23 19 58
2 22 36 44 NA

Average marine 15 21 23 39

indication of a high CO2 consumption due to photosynthesis.
The increase in pH with depth was most pronounced in the
mature biofilms. In addition, a higher irradiance resulted in
a more pronounced increase in pH. In marine biofilms it was
found that in the dark the pH in the biofilm decreased with
depth. In the light an increase was found in the upper part
of the biofilm, while at deeper parts the pH decreased again
and/or remained stable. A decrease in pH can be caused by a
net production of CO2 resulting from high respiratory activ-
ity. The increase in pH in the upper part of the biofilm was
linked to photosynthetic activity and was strongest at high
irradiance.

PLFA analyses showed that the heterotrophic bacterial
biomass was always highest in the marine runs. The average
contribution of bacteria in the marine biofilms was almost
twice the value of the freshwater biofilms (Table 2).

3.1 Modeled differences in CO2 consumption vs. HCO−3
consumption

The model describes the pH in the biofilm based on charge
balance, including the speciation of the different forms of
inorganic carbon due to transport, chemical and biological
conversion processes. The speciation of the different inor-
ganic C pools was calculated with the model for a freshwa-
ter biofilm of 500µm thickness (Fig. 7a). It was found that
at an irradiance of 120µmol photons m−2 s−1, most of the
CO2 was consumed in the upper 150µm of the biofilm. The
HCO3-pool was much larger than the CO2(aq) pool and its
concentration decreased relatively less with depth. Within
the model, CO2 is preferred above HCO−3 as carbon source
and therefore the CO2 consumption rate was highest in the
top layer, while in that region almost no HCO−

3 was con-
sumed (Fig. 7b). The significance of HCO−

3 as C-source in-

creased with depth and maximal HCO−

3 consumption was
found at 350µm depth. Below this depth, irradiance became
limiting and determined the photosynthesis rate rather than
the availability of the different inorganic C-pools. With the
same model, an estimate of the depth integrated consump-
tion rate of the different inorganic carbon pools during the
biomass development was calculated (Figs. 8a and b). It was
found that initially CO2 was the most important C- source
for carbon fixation. With increasing biofilm thickness of the
the relevance of CO2 for photosynthesis decreased. For thick
biofilms (>400µm), HCO−

3 eventually became the most im-
portant C-source for photosynthesis (Fig. 8b).

4 Discussion

We will start the discussion with the freshwater system,
where we observed thatδ13C values increased with the de-
velopment of phototrophic biofilms. In the initial growth
phase no clear correlation was found betweenδ13C values
and the growth rate or irradiance, indicating that the biofilm
growth rate did not affect isotopic fractionation rates at this
stage. This is in contrast with relationships found for isotope
fractionation in phytoplankton, where several studies showed
that the growth rate (Fry and Wainright, 1991; Laws et al.,
1995; Rau et al., 1996) and irradiance (Rost et al., 2002) had
an inverse relationship with isotopic fractionation in different
phytoplankton species. The rationale behind this expected
inverse correlation is that at high growth rates RUBISCO be-
comes transport limited for CO2. This would result in under-
saturation of RUBISCO and therefore a lower fractionation,
as well as in a shift from CO2 to HCO−

3 as the most important
C-source. Both will lead to increasingδ13C values.
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biofilms. Biofilms were grown at incident photon fluxes of 120
(closed squares), 60 (open circles), 30 (closed triangles) and 15
(open triangles). The average values and error bars were calculated
over successively 2 (freshwater,(a)) and 4 (marine,(b)) separate
runs.

It can be assumed that irradiance determines growth dur-
ing the initial stage, and that no other substrate than light is
limiting at this stage. A non-linear relationship between the
relative growth rate at 50% absorbance and irradiance was
found (Fig. 1 and Table 1); logistic growth models describe
that growth rates are highest during the initial phase. Dur-
ing this phase, theδ13C values were lowest. As soon as the
availability of any substrate becomes limiting for growth, the
net biofilm growth rate will decrease during further devel-
opment. After this onset of limitation, we found increasing
δ13C values and a decrease in fractionation in the freshwater
biofilms indicating that the diffusive transport of CO2(aq) be-
came limiting in the biofilm during the later developmental
stages.

In free-living phytoplankton, population-based results
may closely reflect the average of individual cells, but in
our biofilm communities we could only measure the depth
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Fig. 5. Averaged pH of the overlaying growth medium (n=5) dur-
ing the development of phototrophic biofilms grown at different ir-
radiances and media ((a) freshwater medium,(b) marine medium).
The media was refreshed twice a week, and the pH was assumed to
be stable after half a day of incubation. Standard deviations are not
given in the graph for visual clarity. The highest standard deviations
were found in the 120µmol photons m−2 s−1 treatment. The av-
erage standard deviations at that irradiance were 0.55 and 0.19 for
respectively the freshwater and marine runs. The maximum stan-
dard deviations of these runs were respectively 0.95 and 0.35. The
different incubation irradiances were 15 (open triangles), 30 (closed
triangles), 60 (open circles) and 120µmol photons m−2 s−1 (closed
squares).

integrated value. Our model showed that the different C-
sources are not homogenously distributed with depth and
that the depth integrated net-C fixation becomes increasingly
CO2(aq) limited with biofilm thickness, especially since het-
erotrophic biomass was lower in the freshwater biofilms.
Low heterotrophic biomass cannot provide intensive carbon
recycling of photosynthetic products during the light period.

Variations of δ13C values in biofilms may be due to
changes in the C-source rather than being solely the result
of limited CO2(aq) availability. We found a fractionation
of ∼13–17‰ for initial biofilm growth, and the modeled
C-concentrations and volumetric C-fixation rates were rel-
atively high, both indicating that CO2(aq) was not limiting
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Fig. 6. pH micro profiles measured in biofilms of the exponential (a, b, e and f) and mature phase (c, d, g and h) in a freshwater (FW) at
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120µmol photons m−2 s−1 (b, d, f and h). Closed circles represent pH profiles measured in the dark, open squares represent pH profiles
measured in the light. We only show profiles from one freshwater run and one marine run, which are representative for the other runs.

at that stage of biofilm formation (Fig. 7). During further
thickening of the biofilm, model calculations showed that
the depth integrated areal C-fixation rate increased, despite
decreasing biofilm growth rates and a decrease in the aver-

age volumetric C-consumption rate. This resulted in a shift
from CO2 towards HCO−3 as the most important C-source
for photosynthesis. This shift explains the progression to-
wards less negativeδ13C values observed in thick freshwater
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biofilms. In addition, the model showed that the top layer
(<70µm) was not limited by CO2(aq) at an irradiance of
120µmol photons m−2 s−1 in a 500µm thick biofilm.
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tic model describing phototrophic biofilm growth(a) net-total in-
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3 consumption (triangles). The lower graph(b) indicates the

shift in contribution from CO2 (closed circles) to HCO−3 (open tri-
angles) to the total C-consumption.

We also found that the difference inδ13C between the
initial and stationary biofilm growth phase became larger at
higher irradiances (Fig. 2). The opposite trend was found for
fractionation at the different irradiances (less fractionation at
higher irradiances, Fig. 4). Biofilm thickness was approx-
imately similar (light absorption determined at the moment
of sampling) for all sampled irradiances at each given sam-
pling event. Therefore we conclude that for stationary-phase
biofilms (i.e. no net growth) a relationship can be expected
between depth integrated photosynthesis rate andδ13C frac-
tionation.

Our data showed no correlation between theδ13C value
and flow rate, although relationships between fractionation
and mass transport or flow velocity are well described for
phototrophic biofilms (France, 1995a; Larned et al., 2004;
France, 1995b). However, these studies may have different
flow regimes. Our system was developed to have as little tur-
bulence as possible (Zippel et al., 2007), which was differ-
ent from the system described by France (1995a) and Larned
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et al. (2004). Turbulence might affect biofilm development
differently. Furthermore, the measured pH profiles indicated
that the diffusive boundary layers were very thin, 50–150µm
and 50–100µm for 0.5 and 2 m/s flow respectively. This dif-
ference may not be enough to result in clear differences in
δ13C values for both flow rates.

Another reason for the absence of the relationship with
flow velocity may be that in the initial, or exponential growth
phase of biofilms, mass transfer limitation is not an issue.
Differences in diffusive boundary layer thickness, as a result
of higher flow rates or turbulence levels during these early
phases will not affect fractionation efficiencies for13CO2 by
RUBISCO since CO2(aq) availability is not a limiting factor
for fractionation. From the same line of reasoning as was
used for the growth rate (see above), it can be argued that
a correlation between flow rate or turbulence and fraction-
ation will only be found under diffusion limited conditions,
i.e. late exponential and mature biofilms. So it may be that
the correlation found in literature is caused by sampling pref-
erences for mature biofilms. Developmental stages have not
been taken into account in these studies. In natural systems it
will be difficult to distinguish and sample from the different
stages of the biofilm development, since heterogeneity in de-
velopmental stages are present on a small spatial scale, due
to sloughing, grazing, etc (Biggs, 1996; Havens et al., 1996).

Initial δ13C values were less negative in the marine
biofilms, while their relative growth rates did not differ from
the freshwater biofilms. The difference inδ13C values can
be partially explained by theδ13DIC, which was 4–5‰ less
negative than in the freshwater medium, but part of the dif-
ference must be due to differences in fractionation during the
initial phase. Lower fractionation can result from the lower
CO2(aq) concentration in the marine medium. However, nei-
ther the initialδ13DIC, nor the lower CO2(aq) explain the de-
crease inδ13C values with the thickening of the biofilms. It
was calculated that the initial CO2(aq) concentration in the
marine medium was approximately 3–4 times lower than the
freshwater medium despite the higher DIC concentrations.
Therefore, it seems likely that the marine biofilms were more
limited in CO2(aq) than the freshwater biofilms. However, the
high DIC may select for species with a high affinity for bi-
carbonate uptake from the start, and thus led to a relative
high uptake of bicarbonate in the initial phase. Therefore
there may not such a big shift from CO2 to bicarbonate as
the primary C-source. A decrease inδ13C values may also
be explained by the expected decrease in growth rate with
the thickening of the biofilm, as has been shown for phyto-
plankton species (Fry and Wainright, 1991; Laws et al., 1995;
Rau et al., 1996). A prerequisite for this mechanism would
be that the decrease in growth rate is caused by another fac-
tor than carbon limitation. However, the same amounts of
micro-nutrients have been added to both types of media.

In our experiments, one clear difference between the fresh-
water and the marine biofilms was that heterotrophic biomass
was twice as high in the marine biofilms. Higher het-

erotrophic biomass is assumed to result in a higher recycling
of carbon within the biofilm and as a result increase the avail-
ability of CO2(aq). A lowering of the pH with depth in the
dark, indicative for a high respiratory activity, was indeed
found in the marine biofilms. A decrease in pH with depth in
the dark was almost absent in the freshwater biofilms and as
a result we conclude that a much higher heterotrophic activ-
ity was present within the marine biofilms. This was also
confirmed from oxygen micro profile measurements (data
not shown). Carbon cycling within a biofilm may reduce
the δ13C value. It has been shown that as soon as ecosys-
tems shift from phototrophic to heterotrophic systems this
will lower theδ13C values (Schindler et al., 1997; Bade et al.,
2004). High respiration rates increase the level of heterotro-
phy of the biofilm and elevate the CO2 cycling and its avail-
ability for the phototrophic organisms. Moreover, respiration
enriches mostly the12CO2 pool since its source (biomass) is
lighter, relative to the DIC pool.

In conclusion, we found that theδ13C value depends on
the development phase of the phototrophic biofilm, and frac-
tionation seems to be controlled by the balance between
C-demand (net depth-integrated photosynthesis rates) and
mass transfer limitation controlled by the biofilm thickness
in combination with the depth integrated photosynthesis rate
rather than by the actual biofilm growth rate. The freshwa-
ter biofilm model shows that initially our freshwater biofilms
were not limited by CO2(aq) in the light. CO2(aq) only be-
comes limiting with the thickening of the biofilm, which re-
sults in a increase in importance of HCO3 as inorganic car-
bon source for photosynthesis.

However, the direction in which theδ13C value devel-
ops during biomass accretion seems to depend on: the net
depth-integrated C-fixation rate, changes in the utilization
of the different inorganic C-sources and the recycling rate
of C driven by heterotrophic activity. In the marine incuba-
tion, most likely a higher heterotrophic activity in the biofilm
combined with a low CO2(aq) in the medium resulted in the
completely opposite trend inδ13C values, when compared
to the freshwater incubations. We cannot conclude whether
heterotrophic recycling is always more important in marine
systems than in freshwater systems, but in our system it
was. This difference was found despite different, indepen-
dently grown inoculums have been used to seed biomass in
the different runs. Since surface-associated microalgae and
cyanobacteria are amongst the most successful and efficient
primary producers in benthic aquatic environments, and are
considered a main source of energy for higher trophic lev-
els in natural systems, such trends inδ13C value with biofilm
developmental stages need to be taken into account ifδ13C
values of biofilm are used for food web studies.
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