4,460 research outputs found

    A Storage Ring for Neutral Atoms

    Get PDF
    We have demonstrated a storage ring for ultra-cold neutral atoms. Atoms with mean velocities of 1 m/s corresponding to kinetic energies of ~100 neV are confined to a 2 cm diameter ring by magnetic forces produced by two current-carrying wires. Up to 10^6 atoms are loaded at a time in the ring, and 7 revolutions are clearly observed. Additionally, we have demonstrated multiple loading of the ring and deterministic manipulation of the longitudinal velocity distribution of the atoms using applied laser pulses. Applications of this ring include large area atom interferometers and cw monochromatic atomic beam generation.Comment: 4 pages, 5 figure

    Propagation of Bose-Einstein condensates in a magnetic waveguide

    Full text link
    Gaseous Bose-Einstein condensates of 2-3 million atoms were loaded into a microfabricated magnetic trap using optical tweezers. Subsequently, the condensates were released into a magnetic waveguide and propagated 12 mm. Single-mode propagation was observed along homogeneous segments of the waveguide. Inhomogeneities in the guiding potential arose from geometric deformations of the microfabricated wires and caused strong transverse excitations. Such deformations may restrict the waveguide physics that can be explored with propagating condensates.Comment: 5 pages, 4 figure

    Local Structure of La1-xSrxCoO3 determined from EXAFS and neutron PDF studies

    Get PDF
    The combined local structure techniques, extended x-ray absorption fine structure (EXAFS) and neutron pair distribution function analysis, have been used for temperatures 4 <= T <= 330 K to rule out a large Jahn-Teller (JT) distortion of the Co-O bond in La1-xSrxCoO3 for a significant fraction of Co sites (x <= 0.35), indicating few, if any, JT-active, singly occupied e_g Co sites exist.Comment: 5 page

    Parents, individualism and education: three paradigms and four countries

    Get PDF
    The UN Convention on the Rights of the Child (1989) is an important indicator of the increased global importance of education. It defines the goal of education at the level of the child rather than the state, the community or household. The requirement that each child be treated as an individual who can expect to see their 'personality, talents and mental and physical abilities' fully developed, is an example of the individualism which features in three important theoretical paradigms for understanding the rise of education and training. We compare accounts of the global growth of education produced by functionalism, neoinstitutionalism and political economy with the help of qualitative research on children's experience of parental influences. The research is drawn from semi-structured interviews with millennial graduates in Portugal, Singapore, the United Kingdom, and the United States. It reveals weaknesses in the paradigms which are related to the way each theorises individualism and the role it plays in parental influence on education. The functionalist and neoinstitutionalist conceptions of individualism limit the usefulness of these paradigms for understanding changes in the way families around the world prepare children for education. The political economy paradigm is more promising; however, an approach which identifies only one, neoliberal, version of individualism has limited purchase on international differences in parental influences and the way these influences are changing. An approach which can draw on the contrast between a cognitive individualism associated with neoliberalism, and sentimental individualism which originates in social movements, is more promising.info:eu-repo/semantics/publishedVersio

    Multi-black hole solutions in five dimensions

    Full text link
    Using a recently developed generalized Weyl formalism, we construct an asymptotically flat, static vacuum Einstein solution that describes a superposition of multiple five-dimensional Schwarzschild black holes. The spacetime exhibits a U(1)\times U(1) rotational symmetry. It is argued that for certain choices of parameters, the black holes are collinear and so may be regarded as a five-dimensional generalization of the Israel-Khan solution. The black holes are kept in equilibrium by membrane-like conical singularities along the two rotational axes; however, they still distort one another by their mutual gravitational attraction. We also generalize this solution to one describing multiple charged black holes, with fixed mass-to-charge ratio, in Einstein-Maxwell-dilaton theory.Comment: 23 pages, 6 figure

    Effective Electromagnetic Lagrangian at Finite Temperature and Density in the Electroweak Model

    Full text link
    Using the exact propagators in a constant magnetic field, the effective electromagnetic Lagrangian at finite temperature and density is calculated to all orders in the field strength B within the framework of the complete electroweak model, in the weak coupling limit. The partition function and free energy are obtained explicitly and the finite temperature effective coupling is derived in closed form. Some implications of this result, potentially interesting to astrophysics and cosmology, are discussed.Comment: 14 pages, Revtex

    Rotating traversable wormholes

    Get PDF
    The general form of a stationary, axially symmetric traversable wormhole is discussed. This provides an explicit class of rotating wormholes that generalize the static, spherically symmetric ones first considered by Morris and Thorne. In agreement with general analyses, it is verified that such a wormhole generically violates the null energy condition at the throat. However, for suitable model wormholes, there can be classes of geodesics falling through it which do not encounter any energy-condition-violating matter. The possible presence of an ergoregion surrounding the throat is also noted.Comment: 15 pages, harvmac; 1 figure in PicTeX; minor changes; to appear in Phys. Rev.

    Effects of uniaxial strain in LaMnO_3

    Full text link
    The effects of uniaxial strain on the structural, orbital, optical, and magnetic properties of LaMnO_3 are calculated using a general elastic energy expression, along with a tight-binding parameterization of the band theory. Tensile uniaxial strain of the order of 2 % (i.e., of the order of magnitude of those induced in thin films by lattice mismatch with substrates) is found to lead to changes in the magnetic ground state, leading to dramatic changes in the band structure and optical conductivity spectrum. The magnetostriction effect associated with the Neel transition of bulk(unstrained) LaMnO_3 is also determined. Due to the Jahn-Teller coupling, the uniform tetragonal distortion mode is softer in LaMnO_3 than in doped cubic manganates. Reasons why the observed (\pi \pi 0) orbital ordering is favored over a (\pi \pi \pi) periodicity are discussed.Comment: 9 figures, submitted in Phys. Rev.

    Axially symmetric rotating traversable wormholes

    Full text link
    This paper generalizes the static and spherically symmetric traversable wormhole geometry to a rotating axially symmetric one with a time-dependent angular velocity by means of an exact solution. It was found that the violation of the weak energy condition, although unavoidable, is considerably less severe than in the static spherically symmetric case. The radial tidal constraint is more easily met due to the rotation. Similar improvements are seen in one of the lateral tidal constraints. The magnitude of the angular velocity may have little effect on the weak energy condition violation for an axially symmetric wormhole. For a spherically symmetric one, however, the violation becomes less severe with increasing angular velocity. The time rate of change of the angular velocity, on the other hand, was found to have no effect at all. Finally, the angular velocity must depend only on the radial coordinate, confirming an earlier result.Comment: 17 pages, AMSTe

    The control parameterization method for nonlinear optimal control: A survey

    Get PDF
    The control parameterization method is a popular numerical technique for solving optimal control problems. The main idea of control parameterization is to discretize the control space by approximating the control function by a linear combination of basis functions. Under this approximation scheme, the optimal control problem is reduced to an approximate nonlinear optimization problem with a finite number of decision variables. This approximate problem can then be solved using nonlinear programming techniques. The aim of this paper is to introduce the fundamentals of the control parameterization method and survey its various applications to non-standard optimal control problems. Topics discussed include gradient computation, numerical convergence, variable switching times, and methods for handling state constraints. We conclude the paper with some suggestions for future research
    corecore