29,595 research outputs found

    Electron lithography STAR design guidelines. Part 1: The STAR user design manual

    Get PDF
    The STAR system developed by NASA enables any user with a logic diagram to design a semicustom digital MOS integrated circuit. The system is comprised of a library of standard logic cells and computer programs to place, route, and display designs implemented with cells from the library. Library cells of the CMOS metal gate and CMOS silicon gate technologies were simulated using SPICE, and the results are shown and compared

    A model for evolution and extinction

    Full text link
    We present a model for evolution and extinction in large ecosystems. The model incorporates the effects of interactions between species and the influences of abiotic environmental factors. We study the properties of the model by approximate analytic solution and also by numerical simulation, and use it to make predictions about the distribution of extinctions and species lifetimes that we would expect to see in real ecosystems. It should be possible to test these predictions against the fossil record. The model indicates that a possible mechanism for mass extinction is the coincidence of a large coevolutionary avalanche in the ecosystem with a severe environmental disturbance.Comment: Postscript (compressed etc. using uufiles), 16 pages, with 15 embedded figure

    A study of defect structures with the field ion microscope Semiannual report, Sep. 1, 1966 - Feb. 28, 1967

    Get PDF
    Defect structures in ion emission images of metals and stress distributions under imaging conditions studied with field ion microscop

    The Algebra of Strand Splitting. I. A Braided Version of Thompson's Group V

    Full text link
    We construct a braided version of Thompson's group V.Comment: 27 page

    An explanation of the Newman-Janis Algorithm

    Full text link
    After the original discovery of the Kerr metric, Newman and Janis showed that this solution could be ``derived'' by making an elementary complex transformation to the Schwarzschild solution. The same method was then used to obtain a new stationary axisymmetric solution to Einstein's field equations now known as the Kerr-newman metric, representing a rotating massive charged black hole. However no clear reason has ever been given as to why the Newman-Janis algorithm works, many physicist considering it to be an ad hoc procedure or ``fluke'' and not worthy of further investigation. Contrary to this belief this paper shows why the Newman-Janis algorithm is successful in obtaining the Kerr-Newman metric by removing some of the ambiguities present in the original derivation. Finally we show that the only perfect fluid generated by the Newman-Janis algorithm is the (vacuum) Kerr metric and that the only Petrov typed D solution to the Einstein-Maxwell equations is the Kerr-Newman metric.Comment: 14 pages, no figures, submitted to Class. Quantum Gra

    Connectedness properties of the set where the iterates of an entire function are unbounded

    Get PDF
    We investigate the connectedness properties of the set I+(f) of points where the iterates of an entire function f are unbounded. In particular, we show that I+(f) is connected whenever iterates of the minimum modulus of f tend to ∞. For a general transcendental entire function f, we show that I+(f)∪ \{\infty\} is always connected and that, if I+(f) is disconnected, then it has uncountably many components, infinitely many of which are unbounded

    Fast algorithm for detecting community structure in networks

    Full text link
    It has been found that many networks display community structure -- groups of vertices within which connections are dense but between which they are sparser -- and highly sensitive computer algorithms have in recent years been developed for detecting such structure. These algorithms however are computationally demanding, which limits their application to small networks. Here we describe a new algorithm which gives excellent results when tested on both computer-generated and real-world networks and is much faster, typically thousands of times faster than previous algorithms. We give several example applications, including one to a collaboration network of more than 50000 physicists.Comment: 5 pages, 4 figure

    Evolution of Spatially Inhomogeneous Eco-Systems: An Unified Model Based Approach

    Full text link
    Recently we have extended our the "unified" model of evolutionary ecology to incorporate the {\it spatial inhomogeneities} of the eco-system and the {\it migration} of individual organisms from one patch to another within the same eco-system. In this paper an extension of our recent model is investigated so as to describe the {\it migration} and {\it speciation} in a more realistic way.Comment: Latex, 10 pages, 8 figure

    Two-fluid model of the solar corona

    Get PDF
    A simple model of the lower corona which allows for a possible difference in the electron and proton temperatures is analyzed. With the introduction of a phenomenological heating term, temperature and density profiles are calculated for several different cases. It is found that, under certain circumstances, the electron and proton temperatures may differ significantly

    The Universal Cut Function and Type II Metrics

    Get PDF
    In analogy with classical electromagnetic theory, where one determines the total charge and both electric and magnetic multipole moments of a source from certain surface integrals of the asymptotic (or far) fields, it has been known for many years - from the work of Hermann Bondi - that energy and momentum of gravitational sources could be determined by similar integrals of the asymptotic Weyl tensor. Recently we observed that there were certain overlooked structures, {defined at future null infinity,} that allowed one to determine (or define) further properties of both electromagnetic and gravitating sources. These structures, families of {complex} `slices' or `cuts' of Penrose's null infinity, are referred to as Universal Cut Functions, (UCF). In particular, one can define from these structures a (complex) center of mass (and center of charge) and its equations of motion - with rather surprising consequences. It appears as if these asymptotic structures contain in their imaginary part, a well defined total spin-angular momentum of the source. We apply these ideas to the type II algebraically special metrics, both twisting and twist-free.Comment: 32 page
    • …
    corecore