1,929 research outputs found

    Synchronization interfaces and overlapping communities in complex networks

    Full text link
    We show that a complex network of phase oscillators may display interfaces between domains (clusters) of synchronized oscillations. The emergence and dynamics of these interfaces are studied in the general framework of interacting phase oscillators composed of either dynamical domains (influenced by different forcing processes), or structural domains (modular networks). The obtained results allow to give a functional definition of overlapping structures in modular networks, and suggest a practical method to identify them. As a result, our algorithm could detect information on both single overlapping nodes and overlapping clusters.Comment: 5 pages, 4 figure

    Branching Transition of a Directed Polymer in Random Medium

    Full text link
    A directed polymer is allowed to branch, with configurations determined by global energy optimization and disorder. A finite size scaling analysis in 2D shows that, if disorder makes branching more and more favorable, a critical transition occurs from the linear scaling regime first studied by Huse and Henley [Phys. Rev. Lett. 54, 2708 (1985)] to a fully branched, compact one. At criticality clear evidence is obtained that the polymer branches at all scales with dimension dˉc{\bar d}_c and roughness exponent ζc\zeta_c satisfying (dˉc−1)/ζc=0.13±0.01({\bar d}_c-1)/\zeta_c = 0.13\pm 0.01, and energy fluctuation exponent ωc=0.26±0.02\omega_c=0.26 \pm0.02, in terms of longitudinal distanceComment: REVTEX, 4 pages, 3 encapsulated eps figure

    Stability of the replica symmetric solution for the information conveyed by by a neural network

    Get PDF
    The information that a pattern of firing in the output layer of a feedforward network of threshold-linear neurons conveys about the network's inputs is considered. A replica-symmetric solution is found to be stable for all but small amounts of noise. The region of instability depends on the contribution of the threshold and the sparseness: for distributed pattern distributions, the unstable region extends to higher noise variances than for very sparse distributions, for which it is almost nonexistant.Comment: 19 pages, LaTeX, 5 figures. Also available at http://www.mrc-bbc.ox.ac.uk/~schultz/papers.html . Submitted to Phys. Rev. E Minor change

    Fronts dynamics in the presence of spatio-temporal structured noises

    Get PDF
    Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatio-temporal structured noises. An effective deterministic model is analytical derived where the noise parameters, intensity, correlation time and correlation length appear explicitely. The different effects of these parameters are discussed for the Ginzburg-Landau and Schl\"ogl models. We obtain an analytical expression for the front velocity as a function of the noise parameters. Numerical simulations results are in a good agreement with the theoretical predictions.Comment: 11 pages, 6 figures; REVTEX; to be published in Phys.Rev.E, july 200

    Multifractal Properties of Price Fluctuations of Stocks and Commodities

    Full text link
    We analyze daily prices of 29 commodities and 2449 stocks, each over a period of ≈15\approx 15 years. We find that the price fluctuations for commodities have a significantly broader multifractal spectrum than for stocks. We also propose that multifractal properties of both stocks and commodities can be attributed mainly to the broad probability distribution of price fluctuations and secondarily to their temporal organization. Furthermore, we propose that, for commodities, stronger higher order correlations in price fluctuations result in broader multifractal spectra.Comment: Published in Euro Physics Letters (14 pages, 5 figures

    The mutual information of a stochastic binary channel: validity of the Replica Symmetry Ansatz

    Full text link
    We calculate the mutual information (MI) of a two-layered neural network with noiseless, continuous inputs and binary, stochastic outputs under several assumptions on the synaptic efficiencies. The interesting regime corresponds to the limit where the number of both input and output units is large but their ratio is kept fixed at a value α\alpha. We first present a solution for the MI using the replica technique with a replica symmetric (RS) ansatz. Then we find an exact solution for this quantity valid in a neighborhood of α=0\alpha = 0. An analysis of this solution shows that the system must have a phase transition at some finite value of α\alpha. This transition shows a singularity in the third derivative of the MI. As the RS solution turns out to be infinitely differentiable, it could be regarded as a smooth approximation to the MI. This is checked numerically in the validity domain of the exact solution.Comment: Latex, 29 pages, 2 Encapsulated Post Script figures. To appear in Journal of Physics

    Stochastic learning in a neural network with adapting synapses

    Full text link
    We consider a neural network with adapting synapses whose dynamics can be analitically computed. The model is made of NN neurons and each of them is connected to KK input neurons chosen at random in the network. The synapses are nn-states variables which evolve in time according to Stochastic Learning rules; a parallel stochastic dynamics is assumed for neurons. Since the network maintains the same dynamics whether it is engaged in computation or in learning new memories, a very low probability of synaptic transitions is assumed. In the limit N→∞N\to\infty with KK large and finite, the correlations of neurons and synapses can be neglected and the dynamics can be analitically calculated by flow equations for the macroscopic parameters of the system.Comment: 25 pages, LaTeX fil

    Kinematic reduction of reaction-diffusion fronts with multiplicative noise: Derivation of stochastic sharp-interface equations

    Get PDF
    We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated to the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-KPZ universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations, kinetic roughening, and the noise-induced pushed-pulled transition, which is predicted and observed for the first time. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.Comment: 17 pages, 6 figure

    Replica symmetric evaluation of the information transfer in a two-layer network in presence of continuous+discrete stimuli

    Full text link
    In a previous report we have evaluated analytically the mutual information between the firing rates of N independent units and a set of multi-dimensional continuous+discrete stimuli, for a finite population size and in the limit of large noise. Here, we extend the analysis to the case of two interconnected populations, where input units activate output ones via gaussian weights and a threshold linear transfer function. We evaluate the information carried by a population of M output units, again about continuous+discrete correlates. The mutual information is evaluated solving saddle point equations under the assumption of replica symmetry, a method which, by taking into account only the term linear in N of the input information, is equivalent to assuming the noise to be large. Within this limitation, we analyze the dependence of the information on the ratio M/N, on the selectivity of the input units and on the level of the output noise. We show analytically, and confirm numerically, that in the limit of a linear transfer function and of a small ratio between output and input noise, the output information approaches asymptotically the information carried in input. Finally, we show that the information loss in output does not depend much on the structure of the stimulus, whether purely continuous, purely discrete or mixed, but only on the position of the threshold nonlinearity, and on the ratio between input and output noise.Comment: 19 pages, 4 figure

    Optimal static and dynamic recycling of defective binary devices

    Full text link
    The binary Defect Combination Problem consists in finding a fully working subset from a given ensemble of imperfect binary components. We determine the typical properties of the model using methods of statistical mechanics, in particular, the region in the parameter space where there is almost surely at least one fully-working subset. Dynamic recycling of a flux of imperfect binary components leads to zero wastage.Comment: 14 pages, 15 figure
    • …
    corecore