9,362 research outputs found

    Coherent communication link using diode-pumped lasers

    Get PDF
    Work toward developing a diffraction limited, single frequency, modulated transmitter suitable for coherent optical communication or direct detection communication is discussed. Diode pumped, monolithic Nd:YAG nonplanar ring oscillators were used as the carrier beam. An external modulation technique which can handle high optical powers, has moderate modulation voltage, and which can reach modulation rates of 1 GHz was invented. Semiconductor laser pumped solid-state lasers which have high output power (0.5 Watt) and which oscillate at a single frequency, in a diffraction limited beam, at the wavelength of 1.06 microns were built. A technique for phase modulating the laser output by 180 degrees with a 40-volt peak to peak driving voltage is demonstrated. This technique can be adapted for amplitude modulation of 100 percent with the same voltage. This technique makes use of a resonant bulk modulator, so it does not have the power handling limitations of guided wave modulators

    Why P/OF should look for evidences of over-dense structures in solar flare hard X-ray sources

    Get PDF
    White-light and hard X-ray (HXR) observations of two white-light flares (WLFs) show that if the radiative losses in the optical continuum are powered by fast electrons directly heating the WLF source, then the column density constraints imposed by the finite range of the electrons requires that the WLF consist of an over-dense region in the chromosphere, with density exceeding 10 to the 14th power/cu cm. Thus, we recommend that P/OF search for evidences of over-dense structures in HXR images obtained simultaneously with optical observations of flares

    Prototype laser-diode-pumped solid state laser transmitters

    Get PDF
    Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique

    X-ray and low energy gamma-ray observations of the 16 February 1984 solar flare

    Get PDF
    The February 16, 1984 (0900 UT) solar flare was very energetic and produced a variety of emissions. The X-ray and gamma ray continuum measurement, made aboard the International Cometary Explorer (ICE) and the Pioneer Venus Orbiter (PVO), are briefly described

    Experimental Predictions of The Functional Response of A Freshwater Fish

    Get PDF
    The functional response is the relationship between the feeding rate of an animal and its food density. It is reliant on two basic parameters; the volume searched for prey per unit time (searching rate) and the time taken to consume each prey item (handling time). As fish functional responses can be difficult to determine directly, it may be more feasible to measure their underlying behavioural parameters in controlled conditions and use these to predict the functional response. Here, we tested how accurately a Type II functional response model predicted the observed functional response of roach Rutilus rutilus, a visually foraging fish, and compared it with Type I functional response. Foraging experiments were performed by exposing fish in tank aquaria to a range of food densities, with their response captured using a two-camera videography system. This system was validated and was able to accurately measure fish behaviour in the aquaria, and enabled estimates of fish reaction distance, swimming speed (from which searching rate was calculated) and handling time to be measured. The parameterised Type II functional response model accurately predicted the observed functional response and was superior to the Type I model. These outputs suggest it will be possible to accurately measure behavioural parameters in other animal species and use these to predict the functional response in situations where it cannot be observed directly

    Soft-spectrum gamma-ray bursts

    Get PDF
    A typical gamma to ray burst (GRB), when observed over the approximately 30 keV to 1 MeV range, has a 1 to 10 s duration and a spectrum describable in terms of a several-hundred-keV exponential function. However, KONUS data indicate that some GRBs may belong to a separate class of short (approximately 0.1 s), soft (kT 50 keV) events. This result has been questioned because the KONUS experiments, with only 4 s spectral time resolution and a lack of information approximately 30 keV, are not particularly well suited for the detection and study of these bursts. The UC Berkely/Los Alamos Solar X-Ray Spectrometer/GRB experiment on the International Cometry Explorer (ICE), with nearly continuous coverage of approxiomately one-sixth of the sky down to 5 keV at 0.5 s resolution, is better designed for such a task. Using ICE data, it was confirmed that soft-spectrum events do indeed exist, apparently with properties that set them apart from the general GRB population. Results from the ICE experiment are presented

    Localized and Delocalized Charge Transport in Single-Wall Carbon-Nanotube Mats

    Full text link
    We measured the complex dielectric constant in mats of single-wall carbon-nanotubes between 2.7 K and 300 K up to 0.5 THz. The data are well understood in a Drude approach with a negligible temperature dependence of the plasma frequency (omega_p) and scattering time (tau) with an additional contribution of localized charges. The dielectric properties resemble those of the best ''metallic'' polypyrroles and polyanilines. The absence of metallic islands makes the mats a relevant piece in the puzzle of the interpretation of tau and omega_p in these polymers.Comment: 4 pages including 4 figure

    Fermi Edge Singularities and Backscattering in a Weakly Interacting 1D Electron Gas

    Full text link
    The photon-absorption edge in a weakly interacting one-dimensional electron gas is studied, treating backscattering of conduction electrons from the core hole exactly. Close to threshold, there is a power-law singularity in the absorption, I(ϵ)ϵαI(\epsilon) \propto \epsilon^{-\alpha}, with α=3/8+δ+/πδ+2/2π2\alpha = 3/8 + \delta_+/\pi - \delta_+^2/2\pi^2 where δ+\delta_+ is the forward scattering phase shift of the core hole. In contrast to previous theories, α\alpha is finite (and universal) in the limit of weak core hole potential. In the case of weak backscattering U(2kF)U(2k_F), the exponent in the power-law dependence of absorption on energy crosses over to a value α=δ+/πδ+2/2π2\alpha = \delta_+/\pi - \delta_+^2/2\pi^2 above an energy scale ϵ[U(2kF)]1/γ\epsilon^* \sim [U(2k_F)]^{1/\gamma}, where γ\gamma is a dimensionless measure of the electron-electron interactions.Comment: 8 pages + 1 postscript figure, preprint TPI-MINN-93/40-

    Spin Injection into a Luttinger Liquid

    Full text link
    We study the effect of spin injection into a Luttinger liquid. The spin-injection-detection setup of Johnson and Silsbee is considered; here spins injected into the Luttinger liquid induce, across an interface with a ferromagnetic metal, either a spin-dependent current (IsI_s) or a spin-dependent boundary voltage (VsV_s). We find that the spin-charge separation nature of the Luttinger liquid affects IsI_s and VsV_s in a very different fashion. In particular, in the Ohmic regime, VsV_s depends on the spin transport properties of the Luttinger liquid in essentially the same way as it would in the case of a Fermi liquid. The implications of our results for the spin-injection-detection experiments in the high TcT_c cuprates are discussed.Comment: 4 pages, REVTEX, 2 figures. Minor changes and corrections to typos. To appear in Phys. Rev. Let
    corecore