22,563 research outputs found
A system for aerodynamic design and analysis of supersonic aircraft. Part 3: Computer program description
The computer program documentation for the design and analysis of supersonic configurations is presented. Schematics and block diagrams of the major program structure, together with subroutine descriptions for each module are included
Study of low frequency hydromagnetic waves using ATS-1 data
Low frequency oscillations of the magnetic field at ATS-1 were analyzed for the 25 month data interval, Dec., 1966 through 1968. Irregular oscillations and those associated with magnetic storms were excluded from the analysis. Of the 222 events identified, 170 were found to be oscillating predominantly transverse to the background magnetic field. The oscillations were observed to occur most frequently in the early afternoon hours. They also seemed to occur more frequently during Dec., Jan., and Feb. than at any other time of the year. During a given event, the frequency was fairly constant. The event duration varied between a minimum of 10 min. and a maximum of 14 hrs and 26 min. During a given event the amplitude varied
Aerodynamic design and analysis system for supersonic aircraft. Part 2: User's manual
An integrated system of computer programs for supersonic configurations is described. An explanation of system usage, the input definitions, and example output are included. For Part 1, see N75-18185; for Part 3, see N75-18186
A computational system for aerodynamic design and analysis of supersonic aircraft. Part 2: User's manual
An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. This user's manual contains a description of the system, an explanation of its usage, the input definition, and example output
A computational system for aerodynamic design and analysis of supersonic aircraft. Part 3: Computer program description
For abstract, see Vol. 1
No supercritical supercurvature mode conjecture in one-bubble open inflation
In the path integral approach to false vacuum decay with the effect of
gravity, there is an unsolved problem, called the negative mode problem. We
show that the appearance of a supercritical supercurvature mode in the
one-bubble open inflation scenario is equivalent to the existence of a negative
mode around the Euclidean bounce solution. Supercritical supercurvature modes
are those whose mode functions diverge exponentially for large spatial radius
on the time constant hypersurface of the open universe. Then we propose a
conjecture that there should be ``no supercritical supercurvature mode''. For a
class of models that contains a wide variety of tunneling potentials, this
conjecture is shown to be correct.Comment: 11 pages, 3 postscript figures, tarred, gzipped. submitted to Phys.
Rev. D1
A study of the effects of environmental and ablator performance uncertainties on heat shielding requirements for hyperbolic entry vehicles. Volume 2 - Summary of calculations
Calculated ablative quantities for nylon phenolic heat shielding materials of hyperbolic reentry vehicle
Solar Wind programming for DPS 2000 (system test set)
This ATM is a statement of Solar Wind (SWS) processing currently included in the DPS 2000 computer programs being written for the ALSEP System Test Set.[prepared by J. Harris, prepared by C. W. Coleman]
Local Moments in an Interacting Environment
We discuss how local moment physics is modified by the presence of
interactions in the conduction sea. Interactions in the conduction sea are
shown to open up new symmetry channels for the exchange of spin with the
localized moment. We illustrate this conclusion in the strong-coupling limit by
carrying out a Schrieffer Wolff transformation for a local moment in an
interacting electron sea, and show that these corrections become very severe in
the approach to a Mott transition. As an example, we show how the Zhang Rice
reduction of a two-band model is modified by these new effects.Comment: Latex file with two postscript figures. Revised version, with more
fully detailed calculation
Investigation of the influence of a step change in surface roughness on turbulent heat transfer
The use is studied of smooth heat flux gages on the otherwise very rough SSME fuel pump turbine blades. To gain insights into behavior of such installations, fluid mechanics and heat transfer data were collected and are reported for a turbulent boundary layer over a surface with a step change from a rough surface to a smooth surface. The first 0.9 m length of the flat plate test surface was roughened with 1.27 mm hemispheres in a staggered, uniform array spaced 2 base diameters apart. The remaining 1.5 m length was smooth. The effect of the alignment of the smooth surface with respect to the rough surface was also studied by conducting experiments with the smooth surface aligned with the bases or alternatively with the crests of the roughness elements. Stanton number distributions, skin friction distributions, and boundary layer profiles of temperature and velocity are reported and are compared to previous data for both all rough and all smooth wall cases. The experiments show that the step change from rough to smooth has a dramatic effect on the convective heat transfer. It is concluded that use of smooth heat flux gages on otherwise rough surfaces could cause large errors
- …