2,859 research outputs found

    Charge transfer in nanocrystalline-Au/ZnO nanorods investigated by x-ray spectroscopy and scanning photoelectron microscopy

    Get PDF
    [[abstract]]O K- and Zn and Au L3-edge x-ray absorption near-edge structure (XANES), x-ray emission spectroscopy (XES), and scanning photoelectron microscopy (SPEM) are performed to investigate the electronic structure of ZnO nanorods with nanocrystalline (nc)-Au particles grown on the surfaces. The XANES spectra of nc-Au/ZnO nanorods reveal the decrease of the number of both O 2p and Zn 4s/3d unoccupied states with the increase of the nc-Au particle size. The number of Au 6s/5d unoccupied states increases when the size of nc-Au particle decreases, indicating that the deposition of nc-Au particles on the surface of ZnO nanorods promotes charge transfer from the ZnO nanorods to nc-Au particles. Excitation energy dependent XES and SPEM spectra show that the number of electrons in the valence band of O 2p-Zn 4sp hybridized states decreases as the nc-Au particle size increases, revealing that more electrons are excited from the valence band to the conduction band of ZnO nanorods and the storage of electrons in nc-Au particles.[[journaltype]]國外[[incitationindex]]SCI[[cooperationtype]]國內[[booktype]]紙本[[countrycodes]]US

    Electronic structure of ZnO nanorods studied by angle-dependent x-ray absorption spectroscopy and scanning photoelectron microscopy

    Get PDF
    [[abstract]]Angle-dependent x-ray absorption near-edge structure (XANES) and scanning photoelectron microscopy measurements were performed to differentiate local electronic structures at the tips and sidewalls of highly aligned ZnO nanorods. The overall intensity of the O K-edge XANES spectra is greatly enhanced for small photon incident angles. In contrast, the overall intensity of the Zn K-edge XANES is much less sensitive to the photon incident angle. Both valence-band photoemission and O K-edge XANES spectra show substantial enhancement of O 2p derived states near the valence band maximum and conduction band minimum, respectively. The spatially resolved Zn 3d core level spectra from tip and sidewall regions show the lack of chemical shift. All the results consistently suggest that the tip surfaces of the highly aligned ZnO nanorods are terminated by O ions and the nanorods are oriented in the [0001¯] direction. © 2004 American Institute of Physics.[[notice]]補正完畢[[booktype]]紙本[[booktype]]電子

    Electronic structure of the carbon nanotube tips studied by x-ray-absorption spectroscopy and scanning photoelectron microscopy

    Get PDF
    [[abstract]]Angle-dependent x-ray absorption near edge structure (XANES) and scanning photoelectron microscopy (SPEM) measurements have been performed to differentiate local electronic structures of the tips and sidewalls of highly aligned carbon nanotubes. The intensities of both π∗- and σ∗-band C K-edge XANES features are found to be significantly enhanced at the tip. SPEM results also show that the tips have a larger density of states and a higher C 1s binding energy than those of sidewalls. The increase of the tip XANES and SPEM intensities are quite uniform over an energy range wider than 10 eV in contrast to earlier finding that the enhancement is only near the Fermi level.[[booktype]]紙本[[booktype]]電子

    Diameter dependence of the electronic structure of ZnO nanorods determined by x-ray absorption spectroscopy and scanning photoelectron microscopy

    Get PDF
    [[abstract]]O K-, Zn L3, and K-edges x-ray absorption near-edge structure (XANES) spectra and scanning photoelectron microscopy (SPEM) spectra were obtained for ZnO nanorods with various diameters. The analysis of the XANES spectra revealed increased numbers of O 2p and Zn 4p unoccupied states with the downsizing of the nanorods, which reflects the enhancement of surface states when the diameter is decreased. Valence-band photoemission spectra show a significant narrowing of the valence band for the 45 nm diameter nanorod. The Zn 3d intensities in the Zn 3d SPEM spectra are drastically diminished for all nanorods as compared to the ZnO reference film, which can be interpreted as a reduction in density of itinerant final states or in transition probability.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙

    Angle-dependent x-ray absorption spectroscopy study of Zn-doped GaN

    Get PDF
    [[abstract]]As-grown and Zn-implanted wurtzite GaN samples have been studied by angle-dependent x-ray absorption near edge structure (XANES) measurements at the N and Ga K-edges and the Ga L3-edge. The angle dependence of the XANES spectra shows that the Ga–N bonds lying in the bilayer have lower energies than bonds along the c-axis, which can be attributed to the polar nature of the GaN film. The comparison of the Ga L3-edge XANES spectra of as-grown and Zn-doped GaN reveals significant dopant induced enhancement of near-edge Ga d-derived states. © 2002 American Institute of Physics.[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]US

    Timeless path integral for relativistic quantum mechanics

    Full text link
    Starting from the canonical formalism of relativistic (timeless) quantum mechanics, the formulation of timeless path integral is rigorously derived. The transition amplitude is reformulated as the sum, or functional integral, over all possible paths in the constraint surface specified by the (relativistic) Hamiltonian constraint, and each path contributes with a phase identical to the classical action divided by \hbar. The timeless path integral manifests the timeless feature as it is completely independent of the parametrization for paths. For the special case that the Hamiltonian constraint is a quadratic polynomial in momenta, the transition amplitude admits the timeless Feynman's path integral over the (relativistic) configuration space. Meanwhile, the difference between relativistic quantum mechanics and conventional nonrelativistic (with time) quantum mechanics is elaborated on in light of timeless path integral.Comment: 41 pages; more references and comments added; version to appear in CQ

    On the unitarity of higher-dervative and nonlocal theories

    Get PDF
    We consider two simple models of higher-derivative and nonlocal quantu systems.It is shown that, contrary to some claims found in literature, they can be made unitary.Comment: 8 pages, no figure

    Effective dynamics of the closed loop quantum cosmology

    Full text link
    In this paper we study dynamics of the closed FRW model with holonomy corrections coming from loop quantum cosmology. We consider models with a scalar field and cosmological constant. In case of the models with cosmological constant and free scalar field, dynamics reduce to 2D system and analysis of solutions simplify. If only free scalar field is included then universe undergoes non-singular oscillations. For the model with cosmological constant, different behaviours are obtained depending on the value of Λ\Lambda. If the value of Λ\Lambda is sufficiently small, bouncing solutions with asymptotic de Sitter stages are obtained. However if the value of Λ\Lambda exceeds critical value Λc=3mPl22πγ321mPl2\Lambda_{\text{c}} =\frac{\sqrt{3}m^2_{\text{Pl}}}{2\pi\gamma^3} \simeq 21 m^2_{\text{Pl}} then solutions become oscillatory. Subsequently we study models with a massive scalar field. We find that this model possess generic inflationary attractors. In particular field, initially situated in the bottom of the potential, is driven up during the phase of quantum bounce. This subsequently leads to the phase of inflation. Finally we find that, comparing with the flat case, effects of curvature do not change qualitatively dynamics close to the phase of bounce. Possible effects of inverse volume corrections are also briefly discussed.Comment: 18 pages, 11 figure

    ASTROD, ASTROD I and their gravitational-wave sensitivities

    Full text link
    ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) is a mission concept with three spacecraft -- one near L1/L2 point, one with an inner solar orbit and one with an outer solar orbit, ranging coherently with one another using lasers to test relativistic gravity, to measure the solar system and to detect gravitational waves. ASTROD I with one spacecraft ranging optically with ground stations is the first step toward the ASTROD mission. In this paper, we present the ASTROD I payload and accelerometer requirements, discuss the gravitational-wave sensitivities for ASTROD and ASTROD I, and compare them with LISA and radio-wave PDoppler-tracking of spacecraft.Comment: presented to the 5th Edoardo Amaldi Conference (July 6-11, 2003) and submitted to Classical and Quantum Gravit
    corecore