59 research outputs found

    Tip Reconstruction for the Atomic Force Microscope

    Full text link

    Humidity Effects on Atomic Force Microscopy of Gold-Labeled DNA on Mica

    Get PDF
    Recent work in atomic force microscopy (AFM) of deoxyribonucleic acid (DNA) has relied on immobilizing DNA molecules by drying a small volume of buffered DNA solution onto cleaved mica. When imaging in air, relative humidity has been known to affect both the resolution and measured height of the DNA strands. We present data of measured height versus humidity for DNA and attached gold labels, and we propose a model for this data based on swelling of coadsorbed buffer salts upon exposure to moisture. In this model, small particles (e.g., DNA) stay near the top of the swelling salt layer, whereas larger particles (e.g., gold spheres) tend to be anchored down to the substrate until a moderate humidity is reached. At high humidity (around 65%), the salt layer becomes fluid-like and susceptible to tip-induced motion; the salts are either removed from the scan area or aggregate into island structures, depending on initial salt concentration on the surface

    A new DNA nanostructure, the G-wire, imaged by scanning probe microscopy.

    No full text
    G-DNA is a polymorphic family of quadruple helical nucleic acid structures containing guanine tetrad motifs [G-quartets; Williamson, J.R., Raghuraman, M.K. and Cech, T.R. (1989) Cell 59, 871-880; Williamson, J.R. (1993) Proc. Natl. Acad. Sci. USA 90, 3124-3124]. Guanine rich oligonucleotides that are self-complimentary, as found in many telomeric G-strand repeat sequences, form G-DNA in the presence of monovalent and/or divalent metal cations. In this report we use the atomic force microscope (AFM) to explore the structural characteristics of long, linear polymers formed by the telomeric oligonucleotide d(GGGGTTGGGG) in the presence of specific metal cations. In the AFM these polymers, termed G-wires, appear as filaments whose height and length are determined by the metal ions present during the self-assembly process. The highly ordered, controllable self-assembly of G-wires could provide a basis for developing advanced biomaterials

    Atomic force microscopy of oriented linear DNA molecules labeled with 5nm gold spheres.

    Get PDF
    The atomic force microscope (AFM;1) can image DNA and RNA in air and under solutions at resolution comparable to that obtained by electron microscopy (EM) (2-7). We have developed a method for depositing and imaging linear DNA molecules to which 5nm gold spheres have been attached. The gold spheres facilitate orientation of the DNA molecules on the mica surface to which they are absorbed and are potentially useful as internal height standards and as high resolution gene or sequence specific tags. We show that by modulating their adhesion to the mica surface, the gold spheres can be moved with some degree of control with the scanning tip

    Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules.

    Get PDF
    Colloidal gold particles have multiple uses as three-dimensional atomic force microscopy imaging standards because they are incompressible, monodisperse, and spherical. The spherical nature of the particles can be exploited to characterize scanning tip geometry. As uniform spheres, colloidal gold particles may be used to calibrate the vertical dimensions of atomic force microscopy at the nanometer level. The monodisperse and incompressible nature of the gold can be used to characterize the vertical dimensions of coadsorbed biomolecules. Simultaneous measurements of gold with tobacco mosaic virus show that, at the same applied vertical force, the tobacco mosaic virus is undamaged by blunt tips but is compressed or disintegrated under sharper scanning styli, suggesting that specimen degradation is partly a pressure-dependent effect
    corecore