275 research outputs found
Nonlinear Breathing-like Localized Modes in C60 Nanocrystals
We study the dynamics of nanocrystals composed of C60 fullerene molecules. We
demonstrate that such structures can support long-lived strongly localized
nonlinear oscillatory modes, which resemble discrete breathers in simple
lattices. We reveal that at room temperatures the lifetime of such nonlinear
localized modes may exceed tens of picoseconds; this suggests that C60
nanoclusters should demonstrate anomalously slow thermal relaxation when the
temperature gradient decays in accord to a power law, thus violating the
Cattaneo-Vernotte law of thermal conductivity.Comment: 6 pages, 6 figure
PHYCOBILISOMES AND ISOLATED PHYCOBILIPROTEINS. EFFECT OF GLUTARDIALDEHYDE AND BENZOQUINONE ON FLUORESCENCE
The fluorescence of the biliproteins C-phycocyanin from Spirulina platensis, B-phycoerythrin
from Porphyridium cruentum and of isolated whole P. cruentum phycobilisomes is quenched in the
presence of glutardialdehyde (GA) or benzoquinone (BQ). The kinetics of fluorescence decrease thus
induced is biphasic. If GA is used as a quencher, the fluorescence can be recovered at 77 K. Contrary to
the GA-effect, only a minor recovery takes place with BQ at 77K, thus demonstrating a different
mechanism of action of GA and BQ on biliprotein
Tests of Transfer Reaction Determinations of Astrophysical S-Factors
The reaction has been used to determine
asymptotic normalization coefficients for transitions to the ground and first
excited states of . The coefficients provide the normalization for
the tails of the overlap functions for and allow us
to calculate the S-factors for at astrophysical
energies. The calculated S-factors are compared to measurements and found to be
in very good agreement. This provides the first test of this indirect method to
determine astrophysical direct capture rates using transfer reactions. In
addition, our results yield S(0) for capture to the ground and first excited
states in , without the uncertainty associated with extrapolation from
higher energies.Comment: 6 pages, 2 figure
Comparison of low--energy resonances in 15N(alpha,gamma)19F and 15O(alpha,gamma)19Ne and related uncertainties
A disagreement between two determinations of Gamma_alpha of the astro-
physically relevant level at E_x=4.378 MeV in 19F has been stated in two recent
papers by Wilmes et al. and de Oliveira et al. In this work the uncertainties
of both papers are discussed in detail, and we adopt the value
Gamma_alpha=(1.5^{+1.5}_{-0.8})10^-9eV for the 4.378 MeV state. In addition,
the validity and the uncertainties of the usual approximations for mirror
nuclei Gamma_gamma(19F) approx Gamma_gamma(19Ne), theta^2_alpha(19F) approx
theta^2_alpha(19Ne) are discussed, together with the resulting uncertainties on
the resonance strengths in 19Ne and on the 15O(alpha,gamma)19Ne rate.Comment: 9 pages, Latex, To appear in Phys. Rev.
Why hyperbolic theories of dissipation cannot be ignored: Comments on a paper by Kostadt and Liu
Contrary to what is asserted in a recent paper by Kostadt and Liu ("Causality
and stability of the relativistic diffusion equation"), experiments can tell
apart (and in fact do) hyperbolic theories from parabolic theories of
dissipation. It is stressed that the existence of a non--negligible relaxation
time does not imply for the system to be out of the hydrodynamic regime.Comment: 8 pages Latex, to appear in Phys.Rev.
Restoration of Overlap Functions and Spectroscopic Factors in Nuclei
An asymptotic restoration procedure is applied for analyzing bound--state
overlap functions, separation energies and single--nucleon spectroscopic
factors by means of a model one--body density matrix emerging from the Jastrow
correlation method in its lowest order approximation for and
nuclei . Comparison is made with available experimental data and mean--field
and natural orbital representation results.Comment: 5 pages, RevTeX style, to be published in Physical Review
Assessment of Hyperbolic Heat Transfer Equation in Theoretical Modeling for Radiofrequency Heating Techniques
Theoretical modeling is a technique widely used to study the electrical-thermal performance of different surgical procedures based on tissue heating by use of radiofrequency (RF) currents. Most models employ a parabolic heat transfer equation (PHTE) based on Fourierâs theory, which assumes an infinite propagation speed of thermal energy. We recently proposed a one-dimensional model in which the electrical-thermal coupled problem was analytically solved by using a hyperbolic heat transfer equation (HHTE), i.e. by considering a non zero thermal relaxation time. In this study, we particularized this solution to three typical examples of RF heating of biological tissues: heating of the cornea for refractive surgery, cardiac ablation for eliminating arrhythmias, and hepatic ablation for destroying tumors. A comparison was made of the PHTE and HHTE solutions. The differences between their temperature profiles were found to be higher for lower times and shorter distances from the electrode surface. Our results therefore suggest that HHTE should be considered for RF heating of the cornea (which requires very small electrodes and a heating time of 0.6 s), and for rapid ablations in cardiac tissue (less than 30 s)
- âŠ