298 research outputs found

    Resolving the black hole information paradox

    Get PDF
    The recent progress in string theory strongly suggests that formation and evaporation of black holes is a unitary process. This fact makes it imperative that we find a flaw in the semiclassical reasoning that implies a loss of information. We propose a new criterion that limits the domain of classical gravity: the hypersurfaces of a foliation cannot be stretched too much. This conjectured criterion may have important consequences for the early Universe.Comment: harvmac, 11 pages (1 figure) (This essay received an ``honorable mention'' in the Annual Essay Competition of the Gravity Research Foundation for the year 2000.

    A not so brief commentary on cosmological entropy bounds

    Full text link
    There has been, quite recently, a discussion on how holographic-inspired bounds might be used to encompass the present-day dark energy and early-universe inflation into a single paradigm. In the current treatment, we point out an inconsistency in the proposed framework and then provide a viable resolution. We also elaborate on some of the implications of this framework and further motivate the proposed holographic connection. The manuscript ends with a more speculative note on cosmic time as an emergent (holographically induced) construct.Comment: 12 pages and Revtex; (v2) reference added and a few cosmetic change

    The Quantum Physics of Black Holes: Results from String Theory

    Get PDF
    We review recent progress in our understanding of the physics of black holes. In particular, we discuss the ideas from string theory that explain the entropy of black holes from a counting of microstates of the hole, and the related derivation of unitary Hawking radiation from such holes.Comment: 49 pages, Latex, 4 figures, (Review article

    Hawking Radiation from AdS Black Holes

    Get PDF
    We investigate Hawking radiation from black holes in (d+1)-dimensional anti-de Sitter space. We focus on s-waves, make use of the geometrical optics approximation, and follow three approaches to analyze the radiation. First, we compute a Bogoliubov transformation between Kruskal and asymptotic coordinates and compare the different vacua. Second, following a method due to Kraus, Parikh, and Wilczek, we view Hawking radiation as a tunneling process across the horizon and compute the tunneling probablility. This approach uses an anti-de Sitter version of a metric originally introduced by Painleve for Schwarzschild black holes. From the tunneling probability one also finds a leading correction to the semi-classical emission rate arising from the backreaction to the background geometry. Finally, we consider a spherically symmetric collapse geometry and the Bogoliubov transformation between the initial vacuum state and the vacuum of an asymptotic observer.Comment: 13 pages, latex2e, v2: some clarifications and references adde

    Inhomogeneous holographic thermalization

    Get PDF
    The sudden injection of energy in a strongly coupled conformal field theory and its subsequent thermalization can be holographically modeled by a shell falling into anti-de Sitter space and forming a black brane. For a homogeneous shell, Bhattacharyya and Minwalla were able to study this process analytically using a weak field approximation. Motivated by event-by-event fluctuations in heavy ion collisions, we include inhomogeneities in this model, obtaining analytic results in a long wavelength expansion. In the early-time window in which our approximations can be trusted, the resulting evolution matches well with that of a simple free streaming model. Near the end of this time window, we find that the stress tensor approaches that of second-order viscous hydrodynamics. We comment on possible lessons for heavy ion phenomenology.Comment: 53 pages, 10 figures; v2: references adde

    The Lorentz force between D0 and D6 branes in string and M(atrix) theory

    Get PDF
    We use different techniques to analyze the system formed by a D0 brane and a D6 brane (with background gauge fields) in relative motion. In particular, using the closed string formalism of boosted boundary states, we show the presence of a term linear in the velocity, corresponding to the Lorentz force experienced by the D0 brane moving in the magnetic background produced by the D6 brane. This term, that was missed in previous analyses of this system, comes entirely from the R-R odd spin structure and is also reproduced by a M(atrix) theory calculation.Comment: 13 pages, plain LaTeX; some clarifying comments and a reference adde

    Inhomogeneous Thermalization in Strongly Coupled Field Theories

    Full text link
    To describe theoretically the creation and evolution of the quark-gluon plasma, one typically employs three ingredients: a model for the initial state, non-hydrodynamic early time evolution, and hydrodynamics. In this paper we study the non-hydrodynamic early time evolution using the AdS/CFT correspondence in the presence of inhomogeneities. We find that the AdS description of the early time evolution is well-matched by free streaming. Near the end of the early time interval where our analytic computations are reliable, the stress tensor agrees with the second order hydrodynamic stress tensor computed from the local energy density and fluid velocity. Our techniques may also be useful for the study of far-from-equilibrium strongly coupled systems in other areas of physics.Comment: 5 pages, 3 figures; v2: minor clarifications and reference adde

    The interpretation of the solutions of the Wheeler De Witt equation

    Full text link
    We extract transition amplitudes among matter constituents of the universe from the solutions of the Wheeler De Witt equation. The physical interpretation of these solutions is then reached by an analysis of the properties of the transition amplitudes. The interpretation so obtained is based on the current carried by these solutions and confirms ideas put forward by Vilenkin.Comment: 11 pages, latex, no figure
    corecore