1,149 research outputs found

    Feshbach resonances with large background scattering length: interplay with open-channel resonances

    Get PDF
    Feshbach resonances are commonly described by a single-resonance Feshbach model, and open-channel resonances are not taken into account explicitly. However, an open-channel resonance near threshold limits the range of validity of this model. Such a situation exists when the background scattering length is much larger than the range of the interatomic potential. The open-channel resonance introduces strong threshold effects not included in the single-resonance description. We derive an easy-to-use analytical model that takes into account both the Feshbach resonance and the open-channel resonance. We apply our model to 85^{85}Rb, which has a large background scattering length, and show that the agreement with coupled-channels calculations is excellent. The model can be readily applied to other atomic systems with a large background scattering length, such as 6^6Li and 133^{133}Cs. Our approach provides full insight into the underlying physics of the interplay between open-channel (or potential) resonances and Feshbach resonances.Comment: 16 pages, 12 figures, accepted for publication in Phys. Rev. A; v2: added reference

    Magnetic behaviour of narrow track thin-film heads

    Get PDF
    The influence of the trackwidth on the performance of thin film heads has been tested. Results of experiments on the wafer have indicated an increase in the head efficiency with decreasing trackwidth. This was underlined by measurements of the head fringe field and tape recording experiments. A model which takes the domain structure into account has been developed to interpret this behaviour

    Metastable neon collisions: anisotropy and scattering length

    Get PDF
    In this paper we investigate the effective scattering length aa of spin-polarized Ne*. Due to its anisotropic electrostatic interaction, its scattering length is determined by five interaction potentials instead of one, even in the spin-polarized case, a unique property among the Bose condensed species and candidates. Because the interaction potentials of Ne* are not known accurately enough to predict the value of the scattering length, we investigate the behavior of aa as a function of the five phase integrals corresponding to the five interaction potentials. We find that the scattering length has five resonances instead of only one and cannot be described by a simple gas-kinetic approach or the DIS approximation. However, the probability for finding a positive or large value of the scattering length is not enhanced compared to the single potential case. The complex behavior of aa is studied by comparing a quantum mechanical five-channel numerical calculation to simpler two-channel models. We find that the induced dipole-dipole interaction is responsible for coupling between the different |\Omega> states, resulting in an inhomogeneous shift of the resonance positions and widths in the quantum mechanical calculation as compared to the DIS approach. The dependence of the resonance positions and widths on the input potentials turns out to be rather straightforward. The existence of two bosonic isotopes of Ne* enables us to choose the isotope with the most favorable scattering length for efficient evaporative cooling towards the Bose-Einstein Condensation transition, greatly enhancing the feasibility to reach this transition.Comment: 13pages, 8 eps figures, analytical model in section V has been remove

    Predicting scattering properties of ultracold atoms: adiabatic accumulated phase method and mass scaling

    Get PDF
    Ultracold atoms are increasingly used for high precision experiments that can be utilized to extract accurate scattering properties. This calls for a stronger need to improve on the accuracy of interatomic potentials, and in particular the usually rather inaccurate inner-range potentials. A boundary condition for this inner range can be conveniently given via the accumulated phase method. However, in this approach one should satisfy two conditions, which are in principle conflicting, and the validity of these approximations comes under stress when higher precision is required. We show that a better compromise between the two is possible by allowing for an adiabatic change of the hyperfine mixing of singlet and triplet states for interatomic distances smaller than the separation radius. A mass scaling approach to relate accumulated phase parameters in a combined analysis of isotopically related atom pairs is described in detail and its accuracy is estimated, taking into account both Born-Oppenheimer and WKB breakdown. We demonstrate how numbers of singlet and triplet bound states follow from the mass scaling.Comment: 14 pages, 9 figure

    Dissociation of Feshbach Molecules into Different Partial Waves

    Full text link
    Ultracold molecules can be associated from ultracold atoms by ramping the magnetic field through a Feshbach resonance. A reverse ramp dissociates the molecules. Under suitable conditions, more than one outgoing partial wave can be populated. A theoretical model for this process is discussed here in detail. The model reveals the connection between the dissociation and the theory of multichannel scattering resonances. In particular, the decay rate, the branching ratio, and the relative phase between the partial waves can be predicted from theory or extracted from experiment. The results are applicable to our recent experiment in 87Rb, which has a d-wave shape resonance.Comment: Added Refs.[32-38

    Radio-Frequency Spectroscopy of Ultracold Fermions

    Full text link
    Radio-frequency techniques were used to study ultracold fermions. We observed the absence of mean-field "clock" shifts, the dominant source of systematic error in current atomic clocks based on bosonic atoms. This is a direct consequence of fermionic antisymmetry. Resonance shifts proportional to interaction strengths were observed in a three-level system. However, in the strongly interacting regime, these shifts became very small, reflecting the quantum unitarity limit and many-body effects. This insight into an interacting Fermi gas is relevant for the quest to observe superfluidity in this system.Comment: 6 pages, 6 figure

    Techniques for measuring weight bearing during standing and walking

    Get PDF
    OBJECTIVE: To classify and assess techniques for measuring the amount of weight bearing during standing and walking.BACKGROUND: A large variety of weight bearing measuring techniques exists. This review describes their advantages and limitations to assist clinicians and researchers in selecting a technique for their specific application in measuring weight bearing.METHODS: A literature search was performed in Pubmed-Medline, CINAHL, and EMBASE. Measurement techniques were classified in 'clinical examination', 'scales', 'biofeedback systems', 'ambulatory devices' and 'platforms', and assessed on aspects of methodological quality, application, and feasibility.RESULTS: A total of 68 related articles was evaluated. The clinical examination technique is a crude method to estimate the amount of weight bearing. Scales are useful for static measurements to evaluate symmetry in weight bearing. Biofeedback systems give more reliable, accurate and objective data on weight bearing compared to clinical examination and scales, but the high costs could limit their use in physical therapy departments. The ambulatory devices can measure weight bearing with good accuracy and reliability in the hospital and at home. Platforms have the best methodological quality, but are mostly restricted to a gait laboratory, need trained personnel, and are expensive.CONCLUSIONS: The choice of a technique largely depends upon the criteria discussed in this review; however the clinical utilisation, the research question posed, and the available budget also play a role. The new developments seen in the field of 'ambulatory devices' are aimed at extending measuring time, and improved practicality in data collection and data analysis. For these latter devices, however, mainly preliminary studies have been published about devices that are not (yet) commercially available.</p

    Optical excitations in a non-ideal Bose gas

    Full text link
    Optical excitations in a Bose gas are demonstrated to be very sensitive to many-body effects. At low temperature the momentum relaxation is provided by momentum exchange collisions, rather than by elastic collisions. A collective excitation mode forms, which in a Boltzmann gas is manifest in a collision shift and dramatic narrowing of spectral lines. In the BEC state, each spectral line splits into two components. The doubling of the optical excitations results from the physics analogous to that of the second sound. We present a theory of the line doubling, and calculate the oscillator strengths and linewidth.Comment: 5 pages, 3 eps figure

    PTH analoga: vergelijkbaar of verschillend?

    Get PDF
    Momenteel bestaan er 2 verschillende PTH-analoga: PTH 1-34 (teriparatide) en PTH 1-84. Teriparatide is in Nederland vanaf februari 2005 verkrijgbaar; inmiddels is sinds januari 2007 ook PTH 1-84 beschikbaar. Teriparatide is geregistreerd voor de behandeling van vastgestelde osteoporose bij postmenopauzale vrouwen en bij mannen met een verhoogd risico op botbreuken, PTH 1-84 voor de behandeling van postmenopauzale vrouwen met een verhoogd fractuurrisico. Teriparatide bestaat uit de eerste 34 aminozuren van het humane parathormoon, op recombinante wijze geproduceerd, het actieve gedeelte van dit hormoon. De resterende 50 aminozuren staan te boek als het “inactieve” gedeelte van het parathormoon. PTH 1-84 daarentegen bestaat uit 84 aminozuren, het “volledige” parathormoon; ook dit wordt recombinant gesynthetiseerd. In dit artikel zal worden ingegaan op de overeenkomsten en de eventuele verschillen in effectiviteit en veiligheid van teriparatide en PTH 1-84. Wat betreft de effectiviteit is voor beide middelen een overtuigende reductie van wervelfracturen aangetoond; alleen voor teriparatide is reductie van niet-wervelfracturen aangetoond. Een andere belangrijke overeenkomst is dat beide middelen sterk anabool werkzaam zijn, het werkingsmechanisme is essentieel verschillend van bisfosfonaten en van strontiumranelaat. Beide middelen zijn daarmee voor oudere patiënten met ernstige osteoporose een welkome aanvulling van het therapeutisch arsenaal. Dit betreft vooral patiënten die ondanks behandeling met bisfosfonaten of raloxifen of strontiumranelaat na twee wervelinzakkingen opnieuw één of meerdere fracturen krijgen (“inadequate response”), dan wel bovengenoemde drie middelen niet verdragen. Het is hierbij van belang dat beide middelen voorgeschreven dienen te worden door de behandelend medisch specialist, bijvoorbeeld de klinisch geriater. Vanwege de hoge kosten van deze medicamenten, worden deze middelen alleen vergoed bij patiënten die aan bovenstaande criteria voldoen
    corecore